1 / 36

First experiments with KENDA for providing ICs to COSMO-It- EPS

First experiments with KENDA for providing ICs to COSMO-It- EPS. Chiara Marsigli Tiziana Paccagnella Andrea Montani ARPA Emilia-Romagna, SIMC. Set-up for the experiments. DA cycle : 3-hourly cycles , 36 hours 10 members BCs from COSMO-LEPS ( also ICs for cold start )

truly
Download Presentation

First experiments with KENDA for providing ICs to COSMO-It- EPS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. First experiments with KENDA for providing ICs to COSMO-It-EPS Chiara Marsigli Tiziana Paccagnella Andrea Montani ARPA Emilia-Romagna, SIMC

  2. Set-up for the experiments • DA cycle: • 3-hourly cycles, 36 hours • 10 members • BCsfrom COSMO-LEPS (alsoICsforcold start) • no modelperturbations • observations: TEMP SYNOP ACARS AMDAR • Forecast: • 10 members • 36h forecastrange • Parameterperturbations • BCsfrom COSMO-LEPS

  3. Test cases (Hymex SOP)

  4. Issues under investigation A remark: preliminarytestswith a “basic” KENDA set-up • Analysiscycle: • Capabilityof KENDA toaddperturbations at the small scale (spectra) • DifferencesbetweenKENDA-derivedanalyses and downscaledanalyses (spectra, spread, maps) • Qualityof the analyseswithrespecttoobservations (area average) • Forecast: • Qualityof the ensemble forecastwithrespecttoobservations, comparedwithdownscaling ensemble (area average, mapsofprecipitation)

  5. 2012102512 - T level 50 kenda int2lm

  6. 2012102512 - T level 40 kenda int2lm

  7. 2012102512 - T level 30 kenda int2lm

  8. 2012102512 - T level 20 kenda int2lm

  9. 2012102512 - T level 10 kenda int2lm

  10. 2012102512 - T level 1 kenda int2lm

  11. 2012102512 – analysis T level 50 kenda int2lm mean spread

  12. kenda downscaling 2012102512 – analysis spread T level 40 T level 30

  13. kenda downscaling 2012102512 – analysis spread T level 20 T level 10

  14. 2012101112 – analysis T level 50 kenda int2lm mean spread

  15. 2012101112 – analysis T level 40 kenda int2lm mean spread

  16. 2012101112 – analysis T level 30 kenda int2lm mean spread

  17. 2012092512 - T2m areaTOT - downscaling

  18. 2012092512 - T2m areaTOT - kendaICs

  19. 2012092612 - T2m areaTOT - downscaling

  20. 2012092612 - T2m areaTOT - kendaICs

  21. 2012101112 - T2m areaTOT - downscaling

  22. 2012101112 - T2m areaTOT - kendaICs

  23. 2012102512 - T2m areaTOT - downscaling

  24. 2012102512 - T2m areaTOT - kendaICs

  25. One “bad” case

  26. 20121011 16-17 UTC downscalingICs kendaICs

  27. One “good” case

  28. downscalingICs fc + 12 h 20120926 12-24 UTC by V. Poli

  29. kendaICs fc + 12 h 20120926 12-24 UTC by V. Poli

  30. CH2EPS – tp1h – areaLT

  31. kendaIC – tp1h – areaLT

  32. Concludingremarks • Analysiscycle: • KENDA isableto introduce small scale perturbations • KENDA analyseshaveless spread thatdownscaledanalyses, especially at low levels • KENDA analysesnotalwaysclosertoobservationthandownscaledanalyses • Forecast: • Good performance forone case • Bad performance forone case -> explore the impact of: • Addingmodelperturbations in the analysiscycle • Run more ensemble members in the DA cycle • Tune KENDA parameters • Importanceof assimilate precipitation ?

  33. KENDA suite

  34. Modelperturbations in the forecast ensemble

  35. Heghtof the levels

  36. Modelperturbationsexperiment in the KENDA suite

More Related