550 likes | 1.15k Views
Suku Banyak Dan Teorema Sisa. Pengertian Sukubanyak (P o l i n o m i a l) Bentuk Umum suku banyak dalam variabel x yang berderajat n: a n x n + a n-1 x n-1 + …+ a 1 x + a 0 dengan a k adalah koefisien x k a 0 disebut suku tetap. Contoh Tentukan derajat dan koefisien :
E N D
Suku Banyak Dan Teorema Sisa
Pengertian Sukubanyak (P o l i n o m i a l) Bentuk Umum suku banyak dalam variabel x yang berderajat n: anxn + an-1xn-1 + …+ a1x + a0 dengan ak adalah koefisienxk a0 disebut suku tetap
Contoh Tentukan derajat dan koefisien: x4 dan x2 dari suku banyak x5 - x4 + x3 – 7x + 10 Jawab: derajat suku banyak = 5 koefisien x4 = -1 koefisien x2 = 0
Nilai Suku banyak Suku banyak dapat dituliskan dalam bentuk fungsi dari variabelnya Sehingga anxn + an-1xn-1 + …+ a1x + a0 dapat dinyatakan dengan P(x). Nilai suku banyak P(x)untuk x = a adalah P(a)
Contoh Tentukan nilai suku banyak 2x3 + x2 - 7x – 5 untuk x = -2 Jawab: Nilainya adalah P(-2) = 2(-2)3 + (-2)2 - 7(-2) – 5 = -18 + 4 + 14 – 5 = -5
Pembagian Suku banyak dan Teorema Sisa
Pembagian suku banyak P(x) oleh (x – a) dapat ditulis dengan P(x) = (x – a)H(x) + S Keterangan: P(x) suku banyak yang dibagi, (x – a) adalah pembagi, H(x) adalah hasil pembagian, dan S adalah sisa pembagian
Suku banyak x3+4x2-2x+4 Dibagi dengan x-1 memberikan Hasil bagi x2+5x+3 dan sisa Pembagiannya 7=P(1)
Teorema Sisa Jika suku banyak P(x) dibagi (x – a), sisanya P(a) dibagi (x + a) sisanya P(-a) dibagi (ax – b) sisanya P(b/a)
Contoh 1: Tentukan sisanya jika 2x3 – x2 + 7x + 6 dibagi x + 1 atau dibagi x – (-1) Jawab: sisanya adalah P(-1) = 2.(-1)3 – (-1)2 + 7(-1) + 6 = - 2 – 1 – 7 + 6 = -4
Contoh 2: Tentukan sisa dan hasil baginya jika x3 + 4x2 - 5x – 8 dibagi x - 2 Jawab: Dengan teorema sisa, dengan mudah kita dapatkan sisanya, yaitu P(2) = 8 + 16 - 10 - 8 = 6 Hasil bagi x2 + 6x + 7
Pembagian suku banyak dengan (x-k) x3 + 4x2 - 5x – 8 dibagi x - 2 1 4 -5 -8 koefisien Polinom + 2 1 14 2 12 6 7 6 Sisanya 6 Koefisien hsl bagi Jadi hasil baginya: x2 + 6x + 7 artinya dikali 2
Pembagian suku banyak dengan (ax+b) • Untuk dapat menggunakan horner,Karena • maka • Jika suku banyak P(x) dibagi dengan • ax+b memberikan hasil H(x) dan sisa S, • Maka diperoleh hubungan • P(x)=(x+ ).H(x) + S
Contoh 3: Tentukan sisa dan hasil baginya jika 2x3 - 7x2 + 11x + 5 dibagi 2x - 1
Jawab: (2x3 - 7x2 + 11x + 5) : (2x – 1) Sisa: P(½) = 2(½)3 – 7(½)2 + 11.½ + 5 = 2.⅛ - 7.¼ + 5½ + 5 = ¼ - 1¾ + 5½ + 5 = 9
2x3 - 7x2 + 11x + 5 dibagi 2x – 1 Dapat ditulis: 2x3 – 7x2 + 11x + 5 =(2x -1)H(x) + S Pembagi : 2x - 1 Hasil bagi : H(x) Sisa : S Kita gunakan pembagian horner
2x3 - 7x2 + 11x + 5 dibagi 2x – 1 →x = 2 -7 11 5 koefisien Polinom + ½ 2 1 -3 4 -6 8 9 Sisanya 9 Koefisien hasil bagi Sehingga dapat ditulis : artinya dikali ½
2x3 - 7x2 + 11x + 5 dibagi 2x – 1 Dapat ditulis: 2x3 – 7x2 + 11x + 5 =(x - ½)(2x2 – 6x + 8) + 9 =(2x – 1)(x2 – 3x + 4) + 9 Pembagi : 2x - 1 Hasil bagi : x2 – 3x + 4 Sisa : 9
Contoh 4: Nilai m supaya 4x4 – 12x3 + mx2 + 2 habis dibagi 2x – 1 adalah…. Jawab: habis dibagi → S = 0 P(½) = 0 4(½)4 – 12(½)3 + m(½)2 + 2 = 0
P(½) = 0 4(½)4 – 12(½)3 + m(½)2 + 2 = 0 ¼ - 1½ + ¼m + 2 = 0 ¼m = -¼ + 1½ - 2 (dikali 4) m = -1 + 6 – 8 m = -3 Jadi nilai m = -3
Pembagian Dengan (x –a)(x – b) Bentuk pembagiannya dapat ditulis sebagai P(x) = (x – a)(x – b)H(x) + S(x) berarti: P(a) = S(a) dan P(b) = S(b) Catatan: S(x) berderajat 1, misal px + q
Contoh 1: Suku banyak (x4 – 3x3 – 5x2 + x – 6) dibagi (x2 – x – 2), sisanya sama dengan….
Jawab: Bentuk pembagian ditulis: P(x) = (x2 – x – 2)H(x) + S(x) Karena pembagi berderajat 2 maka sisa = S(x) berderajat 1 misal: sisanya px + q
sehingga • bentuk pembagian ditulis: • x4 – 3x3 – 5x2 + x – 6 • = (x2 – x – 2)H(x) + px + q • x4 – 3x3 – 5x2 + x – 6 • = (x + 1)(x – 2)H(x) + px + q • Dibagi (x + 1) bersisa P(-1) • dibagi (x – 2) bersisa P(2)
P(-1) = (-1)4 – 3(-1)3 – 5(-1)2 + (-1) – 6 = 1 + 3 – 5 – 1 – 6 = -8 P(2) = 24 – 3.23 – 5.22 + 2 – 6 = 16 – 24 – 20 + 2 – 6 = -32 P(x) = px + q P(-1) = -p + q = -8 P(2) = 2p + q = -32 -3p = 24 p = -8
p = -8 disubstitusi ke –p + q = -8 8 + q = -8 q = -16 Sisa: px + q = -8x + (-16) Jadi sisa pembagiannya: -8x -16
Contoh 2: Suatu suku banyak bila dibagi oleh x + 2 bersisa -13, dibagi oleh x – 3 sisanya 7. Suku banyak tersebut bila dibagi oleh x2 – x - 6 bersisa….
Jawab: • Misal sisanya: S(x) = ax + b • P(x): (x + 2) • S(-2) = -13 -2a + b = -13 • P(x): (x – 3) • S(3) = 7 3a + b = 7 -5a = -20 a = 4
a = 4 disubstitusi ke • -2a + b = -13 • -8 + b = -13 • b = -5 • Jadi sisanya adalah: ax + b • 4x - 5
Contoh 3: Jika suku banyak P(x) = 2x4 + ax3 - 3x2 + 5x + b dibagi oleh (x2 – 1) memberi sisa 6x + 5, maka a.b=….
Jawab : P(x) = 2x4 + ax3 - 3x2 + 5x + b P(x) : (x2 – 1) sisa = 6x + 5 Pembagi : (x2 -1) = (x + 1)(x – 1) Maka: P(x):(x + 1) sisa =P(-1) 2 - a - 3 - 5 + b = 6(-1) + 5 -a + b – 6 = – 6 + 5 -a + b = 5….(1)
P(x) = 2x4 + ax3 - 3x2 + 5x + b P(x) : x2 - 1 sisa = 6x + 5 Pembagi : x2 -1 = (x+1) (x-1) Maka: P(x):(x – 1) sisa =P(1) 2 + a – 3 + 5 + b = 6(1) + 5 a + b + 4 = 6 + 3 – 2 a + b = 7….(2)
-a + b = 5.…(1) a + b = 7….(2) 2b = 12 b = 6 b = 6 disubstitusi ke a + b = 7 a + 6 = 7 a = 1 Jadi a.b = 1.6 = 6 +
DO YOU THINK EVERY U’RE GOOD SEEING ALWAYS GOOD FOR U • Quest… • what he do right now? THINKED IT
Contoh 4: Jika suku banyak 2x3 – x2 + px + 7 dan sukubanyak 2x3 + 3x2 - 4x – 1 dibagi (x + 1) akan diperoleh sisa yang sama, maka nilai p sama dengan….
Jawab: 2x3 – x2 + px + 7 dibagi (x + 1) Sisanya P(-1) = -1 -1 – a + 7 = 5 - pa
2x3 + 3x2 - 4x – 1 dibagi (x + 1) Sisanya P(-1) = -2 + 3 + 4 – 1 = 4 Karena sisanya sama, Berarti 5 – p = 4 - p = 4 – 5 Jadi p = 1
Contoh 5: Jika suku banyak x3 – 7x + 6 dan sukubanyak x3 – x2 – 4x + 24 dibagi (x + a) akan diperoleh sisa yang sama, maka nilai a sama dengan….
Jawab: x3 – 7x + 6 dibagi (x + a) Sisanya P(-a) = a3 – 7a + 6 x3 – x2 – 4x + 24 dibagi (x + a) Sisanya P(-a) = a3 – a2 – 4a + 24 Sisanya sama berarti: a3 – 7a + 6 = a3 – a2 – 4a + 24
a3 – 7a + 6 = a3 – a2 – 4a + 24 a2 – 7a + 4a + 6 – 24 = 0 a2 – 3a – 18 = 0 (a + 3)(a – 6) = 0 a = -3 atau a = 6 Jadi nilai a = - 3 atau a = 6
Contoh 6: Jika suku banyak P(x) = 2x3 + ax2 - bx + 3 dibagi oleh (x2 – 4) memberi sisa x + 23, maka a + b=….
Jawab : P(x) = 2x3 + ax2 - bx + 3 P(x) : (x2 – 4) sisa = x + 23 Pembagi : (x2 – 4) = (x + 2)(x – 2) Maka: P(x):(x + 2) sisa =P(-2) -16 + 4a + 2b + 3 = (-2) + 23 4a + 2b = 21 + 13 4a + 2b = 34….(1)
P(x) = 2x3 + ax2 - bx + 3 P(x) : x2 - 4 sisa = x + 23 Pembagi : x2 -1 = (x + 2)(x – 2) Maka: P(x):(x – 2) sisa =P(2) 16 + 4a – 2b + 3 = 2 + 23 4a – 2b + 19 = 25 4a – 2b = 25 – 19 4a – 2b = 6….(2)
4a + 2b = 34.…(1) 4a – 2b = 6….(2) 8a = 40 a = 5 a = 5 disubstitusi ke 4a – 2b = 6 20 – 2b = 6 - 2b = -14 b = 7 Jadi a + b = 5 + 7 = 12 +