1 / 32

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2009 őszén

PÓTA MÁRIA. Kilencedikes kompetencia alapú bemeneti mérés matematikából 2009 őszén. A matematikai eszköztudás kompetencia alapú mérése. Méréssorozat első fázisa, melynek a hozzáadott értéket mutató első követő mérése a 2011-es tizedikes országos kompetenciamérés lesz.

wes
Download Presentation

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2009 őszén

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PÓTA MÁRIA Kilencedikes kompetencia alapú bemeneti mérésmatematikából 2009 őszén

  2. A matematikai eszköztudás kompetencia alapú mérése Méréssorozat első fázisa, melynek a hozzáadott értéket mutató első követő mérése a 2011-es tizedikes országos kompetenciaméréslesz. A felmérést az iskolák bonyolították le, általában két egymást követő, 45 perces tanóra keretében.

  3. A mérésben résztvevők köre Fővárosi fenntartói szinten teljeskörű, matematikából 11816 tanuló részvételével. A reprezentatív mintába matematikából 2803 tanuló került, 80 %-uk írta meg a dolgozatot: 1756 fő. A populáció 45 %-a lány, 54 %-a fiú.

  4. A mérés lebonyolítása A és B változatú feladatlappal, az azonos feladatok sorrendjét variálva. Így minden tanuló ugyanazokat a feladatokat oldotta meg. Elsősorban az eszköztudást,nem pedig a tantervi követelmények elsajátítását mértük. • Javítók: szakértők, vezetőtanárok, 10 fő. • Statisztikai feldolgozás: az MFPI végezte.

  5. A tanulók nyolcadikos év végi matematikajegyének megoszlása

  6. A matematikateszt jellemzői

  7. Teljesítményeloszlás matematikából

  8. Matematika-teljesítmények iskolatípusonként

  9. Amatematika kompetenciamérés eredményei képzéstípusonként

  10. A mérés tartalmi területei

  11. Gondolkodási műveletek

  12. Kihagyott feladatok számának megoszlása üresen hagyott feladatok száma

  13. A kompetenciák fejlődésének/fejlesztésének lépései • szint: reorganizáció, • szint: reprodukció, 3. szint: transzfer, 4. szint: problémamegoldás Kompetencia ≥transzferképesség

  14. Az eredmények feladatonként

  15. 1. feladat Egy mobil-szolgáltató két díjcsomagot ajánl: az A változatban a havi előfizetési díj 3600 Ft, amely teljes egészében lebeszélhető, 1 perc beszélgetés díja pedig 30 Ft. A B változatban a havi előfizetési díj 4860 Ft, amely teljes egészében lebeszélhető, 1 perc beszélgetés díja pedig 27 Ft. • Dani havonta átlagosan 150 percet beszél mobiltelefonján. Melyik díjcsomag kedvezőbb a számára? b) Sanyi átlagosan 200 percet telefonál havonta. Neki mennyit kellene az egyes díjcsomagok szerint fizetnie?

  16. 2. feladat Egy derékszögű háromszög befogói 3 cm és 4 cm hosszúak. Ezt a háromszöget tükrözzük az átfogójára. a) Szerkeszd meg a háromszöget, és végezd el az átfogóra való tükrözést! b) Milyen síkidomot határoz meg a derékszögű háromszög és a tükörkép együttesen? c) Mekkora a keletkezett síkidom területe? d) Milyen hosszúak a keletkezett síkidom átlói?

  17. 3. feladat A IX. B osztályba járó 28 diák mindegyike szereti a fagylaltot. Tanítás után egy héten át minden nap bemennek a közeli cukrászdába, és vesznek egy-egy háromgombócos fagyit, 120 Ft/gombóc áron. Hány 15000 Ft-os koncertjegyet tudnának venni a fagyira költött összes pénzből?

  18. 4. feladat Péter kirándulni ment. Otthonról északi irányba indult el, majd 3 km megtétele után délkeletnek fordult. Mivel sok volt az emelkedő, ezért ezen a szakaszon csak 2 km/h-s átlagsebességgel tudott haladni. 90 perc elteltével pihent egy kicsit, majd déli irányban megtett újabb 3 km-t. Lassan esteledett, ezért a legrövidebb úton szeretne hazatérni. a) Készíts térképvázlatot, amelyen berajzolod Péter már megtett útját! b)Hány kilométer hosszú a legrövidebb út, amelyen visszatérhet kiindulási helyére? c) Milyen irányban van Péter otthona mostani helyétől?

  19. 5. feladat Az országúton haladva figyeljük a különböző benzinkutaknál kiírt üzemanyagárakat. Útközben feljegyeztük, hogy a 95-ös benzin ára: az 1. kútnál: 265,9 Ft/ l a 2. kútnál: 272,9 Ft/ l a 3. kútnál: 279,9 Ft/ l a 4. kútnál: 262 Ft/l az 5. kútnál: 269,9 Ft/ l a) Az árakat tízesekre kerekítve melyik kutaknál lenne azonos az üzemanyagár? b) Mennyit fizetünk 34 liter üzemanyagért, ha a legolcsóbb kútnál vásárolunk? c) Mennyivel fizetnénk többet, ha a harmadik kútnál vásárolnánk?

  20. 6. feladat Ha fehér, kék és sárga festéket 9 : 6 : 5 arányban keverünk össze, zöld festéket kapunk. a) A keverék hány százaléka a kék? b) Az elkészített 32 liter festékben hány liter sárga festék van?

  21. 7. feladat Egy zsákutcában a személygépkocsik parkolására egymás mellett öt helyet jelöltek ki. a) Hányféleképpen helyezkedhet el két autó a parkolóban? Jelöld a lehetséges elhelyezkedéseket jellel az ábrán! (A táblázatban maradhat üres sor is.) b) Egy minibusz három egymás melletti parkolóhelyre fér be. Mekkora az esélye (mi a valószínűsége) annak, hogy az érkező minibusz talál elég helyet a parkoláshoz, ha már két autó áll a parkolóban?

  22. 8. feladat 109 m 20 cm szövetből 42 db ugyanolyan kabátot készítettünk. Mennyi szövetet használtunk volna fel, ha csak 35 kabátot varrtunk volna?

  23. 9. feladat Egy 3 méter élhosszúságú, kocka alakú tartály tele van vízzel. A tartály alján lévő csapból 1 óra alatt 1800 liter víz folyik ki. A csapot reggel 8 órakor megnyitottuk, délután 2-kor elzártuk. a) Mennyi víz folyt ki a tartályból? b)A csap elzárása után milyen magasan állt a víz a tartályban? (A csapból kifolyó víz sebessége állandó.)

  24. 10. feladat Az A = 3 + 33 + 33 + 33 + 3 kifejezés értékének kiszámolásakor azt kell figyelembe venni, hogy a szorzás magasabb rendű művelet, mint az összeadás. Ez azt jelenti, hogy először a kijelölt szorzásokat kell elvégezni. Eszerint A = 3 + 9 + 9 + 9 + 3 = 33. Írj zárójeleket a B, C, D kifejezésbe úgy, hogy B, C, D értéke más-más legyen, és számold ki az egyes zárójelezések nyomán kapott eredményt is! B= 3 + 33 + 33 + 33 + 3= C= 3 + 33 + 33 + 33 + 3= D= 3 + 33 + 33 + 33 + 3 =

  25. A matematikafeladatok kapcsolatrendszere

  26. 4., 9. és 6. feladat A 4. és a 9. feladat összetett gondolkodást igényel, többfajta ismeretet kellett mozgósítani megoldásukhoz. Elég erősen kapcsolódik e csoporthoz a 6. feladat, amelyben arányosság alapján kellett következtetést levonni Mindhárom feladat alapvető fontosságú számolási és kombinatív geometriai készséget mért.

  27. 3. és 10. feladat Alapvető számolást igénylő feladatok. A 3. a legegyszerűbbnek számít, mindenkitől elvárható minimális tudásszintet mér. A hármasokkal való számolást, zárójelezést kívánó 10. feladatot a tanulók viszonylag sikeresen oldották meg.

  28. 1. és 5., valamint a 7. feladat Mobiltelefon előfizetési díja, tankolás különféle benzinkutaknál, valamint a parkolási lehetőségek témája. Elenyészővolt azok száma, akik ezekből a feladatokból nem értek elrészpontszámokat.

  29. 2. feladat Derékszögű háromszög szerkesztése, majd tükrözése az átfogóra, Területszámítás. A legkritikusabb feladat. Nem foglalkoztak vele!

  30. A méréssorozat várható eredménye A folyamatos fejlesztés pozitív hatású lesz a tanulókra. Jobb eredmények, sikeresebb iskolai tanulmányok. A bemeneti matematikai kompetenciamérésének összevetése azországos mérés eredményével; a hozzáadott érték vizsgálata több tanulmányiidőpontban.

  31. Köszönöm a figyelmet. pota.maria@fppti.hu

More Related