1 / 1

Condensação da Cromatina

Nos mamíferos a entrada das células no Ciclo Celular deve-se a sinais extracelulares como, por exemplo, os factores de crescimento.

yates
Download Presentation

Condensação da Cromatina

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nos mamíferos a entrada das células no Ciclo Celular deve-se a sinais extracelulares como, por exemplo, os factores de crescimento. Por outro lado, a progressão ordenada através das diferentes fases do Ciclo Celular é possível devido à existência de “Checkpoints” – locais que verificam se os acontecimentos de uma fase são correctamente terminados antes de permitir a progressão para a fase seguinte, por exemplo, uma vez verificada a presença de anomalias estruturais do ADN ou da função dos cromossomas, são activadas vias de sinalização que bloqueiam temporariamente a progressão do ciclo e activam mecanismos de reparação. A divisão individual das células está, portanto, coordenada com as necessidades do organismo como um Todo. Ciclo celular : transição G2 MInês Marques, Isabel Pinto, Ivo Cruz, Jacinta FonsecaLaboratório de Biologia Celular e Molecular, Faculdade de Medicina da Universidade do Porto Fig.2 Checkpoints reguladores do Ciclo Celular Fig.1 Ciclo Celular A transição G2-M envolve alterações significativas em diversos componentes celulares. Para esses eventos tem especial contribuição o heterodímero CDK1 (Ciclin-Dependent Kinase 1) / ciclina B originalmente designado MPF (Maturation/Mitosis Promotion Factor – factor promotor da maturação/mitose). A CDK1 é responsável pela capacidade de fosforilação do substrato, enquanto que a ciclina B prende-se com a regulação do heterodímero. Este complexo é activado aquando da transição G2-M pela desfosforilação dos resíduos treonina-14 e tirosina-15. Uma vez activado, promove diversos processos essenciais à transição, nomeadamente: condensação da cromatina, fragmentação da membrana nuclear, do complexo de Golgi e do retículo endoplasmático e formação do fuso mitótico. Formação do fuso acromático Em consequência da fosforilação das proteínas associadas a microtúbulos (MAPs), a taxa de polimerização microtubular aumenta, resultando na formação activa de novos microtúbulos. Globalmente, deste processo resulta a destruição da rede microtubular da interfase e formação do fuso mitótico. O ciclo celular compreende os processos que ocorrem desde a formação de uma célula até à sua divisão em duas células-filhas com as mesmas características genéticas. Ele pode ser dividido em duas etapas básicas: Interfase e Mitose. Os períodos da Interfase são: G1, em que se verifica intensa síntese de RNA e proteínas, contribuindo para um aumento marcado do volume celular; S, o período de replicação do DNA e G2, no qual o crescimento celular continua, havendo uma discreta síntese de RNA e proteínas, essenciais para o início da mitose (M). A Mitose abrange 4 fases – Profase, Metafase, Anafase e Telofase – durante as quais ocorre a divisão celular propriamente dita com a formação das duas células-filhas com DNA qualitativa e quantitativamente igual. Fig.3 Célula em Metafase – cromossomas a azul-arroxeado e fuso acromático a verde Quebra do Invólucro Nuclear Condensação da Cromatina O heterodímero CDK1/CicB fosforila as laminas, que se despolimeriza primeiro, que antecede a fragmentação da membrana nuclear em pequenas vesículas, algumas das quais se fundirão com o R.E.. A quebra do invólucro permite que microtúbulos cinetocóricos do fuso acromático se liguem aos cromossomas, iniciando um movimento que vai permitir o seu alinhamento na metafase. A condensação da cromatina impede a sua transcrição e permite a movimentação eficaz dos cromossomas ao longo do fuso. A condensação deve-se à acção de complexos proteicos denominados Condensinas que são fosforiladas directamente pelo heterodímero. O mesmo fosforila a histona H1. Pelo contrário, a histona H3 é fosforilada mas por outra cínase proteica (aurora B). Fragmentação do Complexo de Golgi e Retículo Endoplasmático O MPF induz a fragmentação do Retículo Endoplasmático e do Complexo de Golgi em pequenas vesículas em parte através da fosforilação da proteína da membrana do Golgi GM130. Fig.4 Fosforilação das lâminas e desorganização do invólucro nuclear • Referências: • Alberts B e col. (2002) Molecular Biology of the Cell, 4ª Ed., Garland Science. • Cooper G e Hausman R (2004) The Cell – A molecular approach, 3ª Ed., ASM Press, Sinauer Assoc., Inc. • Pollard, T e Earnshaw, W (2002) Cell Biology, W.B. Saunders/Elsevier. Fig.5 Diferentes níveis de condensação do ADN: 1) Hélice de ADN; 2) Molécula de cromatina (AND e histonas); 3) Cromatina durante a Interfase com o centr´mero a vermelho; 4) Cromatina condensada durante a Profase (duas cópias da molécula de ADN); 5) Cromossoma durante Metafase. • Agradecimentos: • Professor Doutor Henrique de Almeida (orientador) • Laboratório de Biologia Celular e Molecular da Faculdade de Medicina da Universidade do Porto Fig.6 Fragmentação do Complexo de Golgi

More Related