1 / 45

Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-9

Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-9. Disajikan oleh Sudaryatno Sudirham melalui www.darpublic.com. Analisis Transien. Pengantar

aldona
Download Presentation

Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SelamatDatangDalamKuliah Terbuka AnalisisRangkaianListrikSesi-9

  2. DisajikanolehSudaryatno Sudirhammelaluiwww.darpublic.com

  3. AnalisisTransien

  4. Pengantar Peristiwatransiendalamrangkaianlistrik, yang walaupunberlangsung hanya beberapa saat namun jika tidak ditangani secara benar dapat menyebabkan terjadinya hal-hal yang sangat merugikan padarangkaian Dalampelajaraninianalisistransiendilakukan di kawasanwaktumeliputi AnalisisTransienRangkaian Orde-1 AnalisisTransienRangkaianOrde-2

  5. Yang dimaksud dengan analisis transien adalah analisis rangkaian yang sedang dalam keadaan peralihan atau keadaan transien. Peristiwa transien biasanya berlangsung hanya beberapa saat namun jika tidak ditangani secara baik dapat menyebabkan terjadinya hal-hal yang sangat merugikan padarangkaian Peristiwatransientimbulkarenapadasaatterjadiperubahankeadaanrangkaian, misalnyapenutupanataupembukaansaklar, rangkaian yang mengandungelemendinamikcenderungmemperatahankan status yang dimilikinyasebelumperubahanterjadi

  6. Dalampembahasan model pirantipasifkitapelajaribahwategangankapasitoradalahpeubah status kapasitor; danarusinduktoradalahpeubah status induktor. Padasaat-saatterjadiperubahanrangkaian, kapasitorcenderungmempertahankantegangan yang dimilikinyasesaatsebelumterjadiperubahan Padasaat-saatterjadiperubahanrangkaian, induktorcenderungmempertahankanarus yang dimilikinyasesaatsebelumterjadiperubahan Peubah status tidakdapatberubahsecaramendadak

  7. S R A + vs  + vC  C B R S A + vs  iL L B Kita ambilcontohrangkaianseriR danC Apabilasesaatsebelumsaklar S ditutupkapasitortidakbertegangan, makasetelahsaklarditutuptegangankapasitorakanmeningkatmulaidari nol. Tegangankapasitortidakdapatberubahsecaramendadak. Kita ambilcontoh lain, rangkaianseriR danL Sesaatsebelumsaklardibuka, aruspadainduktoradalahiL =vs/R. Padawaktusaklardibuka, arusinduktorakanturunmenujunoldalamwaktutertentukarenaarusinduktortidakdapatberubahsecaramendadak. Sebelummencapainolarusinduktormengalirmelaluidioda.

  8. Karena hubungan antara arus dan tegangan pada induktor maupun kapasitor merupakan hubungan linier diferensial, maka persamaan rangkaian yang mengandung elemen-elemen ini juga merupakan persamaan diferensial Persamaan diferensial ini dapat berupa persamaan diferensial orde pertama dan rangkaian yang demikian ini disebut rangkaian atau sistem orde-1 Jika persamaan rangkaian berbentuk persamaan diferensial orde kedua maka rangkaian ini disebut rangkaian atau sistem orde-2

  9. +  S R A iC + v  + vin  i vs C B Rangkaian Orde-1biasanyamengandunghanyasatuelemendinamik, induktorataukapasitor Rangkaian RC Seri HTK setelahsaklartertutup: Inilahpersamaanrangkaian yang merupakanpersamaandiferensialordepertamadengantegangansebagaipeubahrangkaian

  10. S R A +  iL L vs i B Rangkaian RL Seri HTK setelahsaklartertutup: Inilahpersamaanrangkaian yang merupakanpersamaandiferensialordepertamadenganarussebagaipeubahrangkaian

  11. L S + v  R + vin  i +  vs C Rangkaian Orde-2biasanyamengandungduaelemendinamik, induktordankapasitor Rangkaian RLC Seri Karena i = iC= C dv/dt, maka: Inilahpersamaanrangkaian yang merupakanpersamaandiferensialordeke-duadengantegangansebagaipeubahrangkaian

  12. is A iR iC + v  iL = i L C R B Rangkaian RLC Paralel v =vL=L di/dt, sehinggaiR= v/RdaniC= C dv/dt Inilahpersamaanrangkaian yang merupakanpersamaandiferensialordeke-duadenganarussebagaipeubahrangkaian

  13. RangkaianOrde-1

  14. BentukUmumPersamaan Rangkaian Orde-1 Fungsi x(t) adalah masukan pada rangkaian yang dapat berupa tegangan ataupun arus dan disebut fungsi pemaksa atau fungsi penggerak. y adalahfungsikeluaran tetapanadan bditentukan oleh nilai-nilai elemen yang membentuk rangkaian Persamaan diferensial seperti di atasmempunyaisolusi yang disebut solusi total yang merupakan jumlah dari solusi homogen dan solusi khusus

  15. Solusihomogenadalah fungsi yang dapat memenuhi persamaan homogen di manax(t)bernilainol: Misalkansolusipersamaaniniy0 Solusi khusus adalah fungsi yang dapat memenuhi persamaanaslinya di manax(t) tidakbernilainol Misalkansolusipersamaaniniyp Solusi totaladalahjumlahdarikeduasolusi. Jadiytotal= (y0+yp)

  16. +  S R A iL L vs i B Tanggapan Alami, Tanggapan Paksa, Tanggapan Lengkap Dalamrangkaianlistrik, fungsipemaksax(t)adalahbesaran yang masukkerangkaiandanmemaksarangkaianuntukmenanggapinya; besaraninibiasanyadatangdarisumber. Dalamrangkaianinix(t) = vs Dalamrangkaianlistriksolusihomogenadalahtanggapanrangkaianapabilax(t) = vs = 0dantanggapaninidisebuttanggapanalami Dalamrangkaianlistriksolusikhususadalahtanggapanrangkaianapabilax(t) = vs 0dantanggapaninidisebuttanggapanpaksa Dalamrangkaianlistriksolusi total disebuttanggapanlengkapyang merupakanjumlahdaritanggapanalamidantanggapanpaksa

  17. Tanggapan Alami Tanggapanalamiadalahsolusikhususdaripersamaanhomogen : atau Dalamkuliahinikitaakanmencarisolusipersamaanhomogeninidengancarapendugaan Persamaan homogenini memperlihatkanbahwa yditambah dengan suatu tetapan kali turunany, sama dengan nol untuk semua nilai t Hal ini hanya mungkin terjadi jika ydan turunannyaberbentuk sama; fungsi yang turunannya mempunyai bentuk sama dengan fungsi itu sendiri adalah fungsi eksponensial. Jadi kita dapat menduga bahwa solusi dari persamaanhomogeninimempunyai bentuk eksponensial y = K1est

  18. Jika solusi dugaan ini kita masukkan ke persamaannya, kita peroleh atau Salah satusolusiadalah y = 0, namuninibukanlahsolusi yang kitacari Inilah yang harusbernilai 0 sedangkanK1adalahtetapan yang  0 Inidisebut persamaankarakteristik. Persamaaniniakanmenentukanbentuktanggapanrangkaian. Akarpersamaaniniadalahs = (b/a) Jadi tanggapan alamiyang kita cari adalah Tetapaninimasihharuskitacari. Nilaitetapaninidiperolehdari tanggapanlengkappadawaktut = 0 Untukmencaritanggapanlengkapkitamencarilebihdulutanggapanpaksa, yp

  19. Tanggapan Paksa Tanggapanpaksaadalahsolusidaripersamaan: Jikasolusipersamaaninikitasebutyp(t), makabentuk yp(t) haruslah sedemikian rupa sehingga jika yp(t) dimasukkan ke persamaanini maka ruas kiri dan ruas kanan persamaan akan berisi bentuk fungsi yang sama. Hal iniberartix(t), yp(t), dandyp(t)/dtharusberbentuksama Kita lihatbeberapakemungkinanbentukfungsipemaksa, x(t): 1. x(t) = 0. Jikafungsipemaksabernilainolmakahanyaakanadatanggapanalami; tanggapanpaksa = 0. 2. x(t) = K. Jikafungsipemaksabernilaitetapmakatanggapanpaksaypjugaharusmerupakantetapankarenahanyadengancaraitudyp/dtakanbernilainolsehinggaruaskanandankiridapatberisibentukfungsi yang sama. 3. x(t) = Aet.Jikafungsipemaksaberupafungsieksponensial, makatanggapanpaksaypharusjugaeksponensialkarenadengancaraituturunanypjugaakanberbentukeksponensial, danfungsi di ruaskiridankananpersamaanrangakaianakanberbentuksama.

  20. x(t) = Asint.Jikafungsipemaksaberupafungsi sinus, makatanggapanpaksaakanberupapenjumlahanfungsifungsi sinus dancosinuskarenafungsi sinus merupakanpenjumlahandariduafungsieksponensialkompleks. Melihatidentitasini, makakitabisakembalikekasus 3; perbedaannya adalahkitamenghadapieksponensialkomplekssedangkan di kasus 3 kitamenghadapifungsieksponensialnyata. DalamhalinimakaSolusi yang kitacariakanberbentukjumlahfungsi sinus dancosinus. 5. x(t) = Acost. Kasusinihampirsamadengankasus 4, hanyaberbedapadaidentitasfungsicosinus

  21. Ringkasanbentuktanggapanpaksa

  22. Tanggapan Lengkap Dugaantanggapan lengkap adalah Inimasihdugaankarenatanggapanalamijugamasihdugaan tanggapan paksa Dugaantanggapan alami K1masihharusditentukanmelaluipenerapankondisiawalyaitukondisipadat = 0 Kondisi Awal Kondisiawaladalahsituasisesaatsetelahpenutupanrangkaian (jikasaklarditutup) atausesaatsetelahpembukaanrangkaian (jikasaklardibuka); Sesaatsebelumpenutupan/pembukaansaklardinyatakansebagait = 0- Sesaatsesudahpenutupan/pembukaansaklardinyatakansebagait = 0+. Padainduktor,aruspadat = 0+samadenganaruspadat = 0- Padakapasitor,teganganpadat = 0+samadenganteganganpadat = 0-

  23. Jikakondisiawalkita masukkan pada dugaan solusi lengkapakan kita peroleh nilai K1 Dengandemikiantanggapanlengkapadalah Inimerupakankomponenmantapdaritanggapanlengkap; iamemberikannilaitertentupadatanggapanlengkappadat =  Inimerupakankomponentransiendaritanggapanlengkap; iabernilai 0 pada t = 

  24. ProsedurMencariTanggapan LengkapRangkaian • Carilahnilaipeubah status padat = 0; inimerupakankondisiawal. • Carilahpersamaanrangkaianuntukt > 0. • Carilahpersamaankarakteristik. • Carilahdugaantanggapanalami. • Carilahdugaantanggapanpaksa. • Carilahdugaantanggapanlengkap. • Terapkankondisiawalpadadugaantanggapanlengkap yang akanmemberikanniali-nilaitetapan yang harusdicari. • Dengandiperolehnyanilaitetapan, didapatlahtanggapanrangkaian yang dicari

  25. S 1 2 R=10k +  + v  vs=12V C=0.1F Contoh: x(t) = 0 Saklar S telah lama pada posisi 1. Padat = 0 S dipindahkeposisi 2. Carilahtanggapanrangkaian. 1. Pada t = 0- kapasitortelahterisipenuhdanv(0+) = 12 V 2. Persamaanrangkaianuntukt > 0: Karena maka 3. Persamaan karakteristik:

  26. 4. 5. 6. 7. 8.

  27. S Contoh: x(t) = 0 A Saklar S telah lama tertutup. Padat = 0 saklar S dibuka. Carilahtanggapanrangkaian R 0 =1 k i +  vs = 50 V L= 0.6 H R =3 k Sebelumsaklardibuka: Persamaan rangkaian pada t > 0: Simpul A: Karena vA = vL= L di/dt, Persamaankarakteristik:

  28. Persamaankarakteristik:

  29. i S 2 1 + v  10k + - 12V 0,1F Contoh: x(t) = A Saklar S telah lama pada posisi 1. Padat = 0 saklardipindahkeposisi 2. Carilahtanggapanrangkaian. Padat = 0- kapasitortidakbermuatan; tegangankapasitorv(0-) = 0. v(0+) = 0 Persamaanrangkaianpadat > 0: Karena i = iC= C dv/dt Persamaankarakteristik:

  30. 12 v [V] 12-12e1000t t 0 0 0.002 0.004

  31. A iC + v  15 vs=50cos10t u(t) V vs 10 1/30 F v(0+) = 0 +  Contoh: x(t) = Acost Rangkaian di sampinginimendapatmasukantegangan sinusoidal yang munculpadat = 0. Kondisiawaldinyatakanbernilainol: Persamaan rangkaian untuk t> 0: Simpul A: iC = C dv/dt Persamaankarakteristik:

  32. Persamaankarakteristik:

  33. S 1 2 +  + v  vs iR R C KonstantaWaktu Lama waktu yang diperlukanolehsuatuperistiwatransienuntukmencapaiakhirperistiwa (kondisimantap) ditentukanolehkonstantawaktu yang dimilikiolehrangkaian. TinjauanpadaContohsebelumnya SetelahsaklarS padaposisi 2, persamaanraqngkaianadalah: Fungsi karakteristik: Dugaan tanggapan alami: Tanggapanalamiini yang akanmenentukankomponentransienpadatanggapanlengkap

  34. Tanggapan alami: Tanggapan alami dapat dituliskan: dengan: Tanggapanlengkapmenjadi: Tanggapanpaksa disebutkonstantawaktu. Iaditentukanolehbesarnyaelemenrangkaian. Iamenentukanseberapacepattransienmenujuakhir. Makin besarkonstantawaktu, makinlambattanggapanrangkaianmencapainilaiakhirnya (nilaimantapnya), yaitunilaikomponenmantap, vp

  35. A + R 0 + i +  vs L R   S TinjauanpadaContohsebelumnya Padat = 0 saklar S dibuka Persamaan rangkaian setelah saklar dibuka adalah: Persamaankarakteristik: Tanggapan alami: Tanggapanalamiinijugaakanmenentukankomponentransienpadatanggapanlengkapsepertihalnyatinjauanpada Contoh-2.1

  36. Tanggapan alami: Tanggapan alami dapat dituliskan: dengan: Tanggapan lengkap: Tanggapanpaksa disebutkonstantawaktu. Iaditentukanolehbesarnyaelemenrangkaian. Iamenentukanseberapacepattransienmenujuakhir. Makin besarkonstantawaktu, makinlambattransienmencapainilaiakhirnyayaitunilaikomponenmantap, ip.

  37. S 2 1 + - TinjauanpadaContohsebelumnya i + v  R Pada t = 0, S dipindahkan ke posisi 2. vs C Persamaanrangkaiansetelahsaklarpadaposisi 2: Karena i = iC= C dv/dt Persamaan karakteristik: Tanggapanalami: Tanggapan lengkap:

  38. A iC + v  R1 vs=Acost u(t) R2 C +  TinjauanpadaContohsebelumnya Simpul A: iC = C dv/dt Persamaan karakteristik: Tanggapanalami: Tanggapan lengkap:

  39. L R R C R1 R2 C Dari tinjauan contoh-1 s/d 4, denganmenggambarkanrangkaianuntukmelihattanggapanalamisaja, kitabuatringkasanberikut: Konstantawaktuditentukanolehbesarelemen-elemenrangkaian UntukrangkaianR-C : = RC UntukrangkaianR-L :  = L/R

  40. Konstantawaktuditentukanolehbesarelemen-elemenrangkaian UntukrangkaianR-C : = RC UntukrangkaianR-L :  = L/R Konstantawaktujugaditentukanolehberapabesarenergi yang semulatersimpandalamrangkaian (yang harusdikeluarkan) Makin besarCdanmakinbesarL, simpananenergidalamrangkaianakanmakinbesarkarena OlehkarenaitukonstantawaktuberbandinglurusdenganCatauL Penguranganenergiberlangsungdenganmengalirnyaarusi dengandesipasidayasebesari2R. DalamkasusrangkaianR-C, di manav adalahpeubah status, makinbesarR akanmakinbesarkarenaarusuntukdesipasimakinkecil. DalamkasusrangkaianR-L di manapeubah status adalahimakinbesarRakanmakinkecilkarenadesipasidayai2Rmakinbesar

  41. TanggapanMasukanNoldan Tanggapan Status Nol Peristiwatransiendapat pula dilihatsebagaigabungandari tanggapanmasukannoldantanggapan status nol TanggapanMasukanNoladalahtanggapanrangkaianjikatidakadamasukan. Peristiwainitelahkitakenalsebagaitanggapanalami Tanggapan Status Noladalahtanggapanrangkaianjikaadamasukanmasukanpadarangkaiansedangkanrangkaiantidakmemilikisimpananenergiawal (simpananenergisebelumterjadinyaperubahanrangkaian). Pengertiantentangtanggapan status nolinimunculkarenasesungguhnyatanggapanrangkaian yang mengandungelemendinamikterhadapadanyamasukanmerupakanperistiwatransienwalaupunrangkaiantidakmemilikisimpananenergiawal

  42. L + vC  R R C iL masing-masingmenunjukkanadanyasimpananenergienergiawaldalamrangkaian di kapasitor sebesar ½CvC2 di induktor sebesar ½LiL2 TanggapanMasukanNol Bentuk tanggapan rangkaiantanpafungsipemaksasecara umum adalah tanggapan masukan nol vC(0+)atauiL(0+) peubah status, vCdaniL, tidakdapatberubahsecaramendadak Pelepasanenergi di kapasitordaninduktorterjadisepanjangperistiwatransien, yang ditunjukkanolehperubahantegangankapasitordanarusinduktor

  43. Tanggapan Status Nol Jika sebelumperistiwatransientidakadasimpananenergidalamrangkaian, maka tanggapan rangkaian kita sebut tanggapan status nol Bentuk tanggapan ini secara umum adalah Tanggapan status nol Bagianinimerupakanreaksielemendinamik (kapasitorataupuninduktor) dalammencobamempertahankan status rangkaian. Olehkarenaituiabertandanegatif. Status final t =  yf(0+) adalahnilaitanggapanpadat = 0+ yang samabesardenganyfsehinggapadat = 0+tanggapan status nolys0 = 0.

  44. Dengandemikian tanggapanlengkap rangkaian dapat dipandang sebagai terdiri dari tanggapan status nol dan tanggapan masukan nol Konstantawaktuditentukanolehelemenrangkaian

  45. Kuliah Terbuka AnalisisRangkaianListrik di KawasanWaktu Sesi 9 SudaryatnoSudirham

More Related