1 / 16

„Wszystko powinno być wykonane tak prosto jak to możliwe, ale nie prościej.”

„Wszystko powinno być wykonane tak prosto jak to możliwe, ale nie prościej.”. Albert Einstein. NOTACJA WYKŁADNICZA.

Download Presentation

„Wszystko powinno być wykonane tak prosto jak to możliwe, ale nie prościej.”

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. „Wszystko powinno być wykonane tak prosto jak to możliwe, ale nie prościej.” Albert Einstein

  2. NOTACJA WYKŁADNICZA. Notacja wykładnicza, zwana też notacją naukową, to uproszczony sposób zapisywania liczb, które normalnie zajmowałyby dużo miejsca. Najważniejszym elementem notacji wykładniczej jest odpowiednia potęga dziesiątki. Z notacją wykładniczą spotykamy się najczęściej, gdy w grę wchodzą bardzo duże lub bardzo małe liczby. Np.: Powierzchnia Polski: 3,12683 ∙ 1011 m2 Masa wirusa grypy sezonowej: 7 ∙ 10-16 kg Odległość księżyca od Ziemi: 3,8 ∙ 106 km Szybkość z jaką rośnie ludzki włos: 5 ∙ 109 m/s

  3. NOTACJA WYKŁADNICZA.

  4. PRZYKŁADY. PRZYKŁAD 1. Zapisz w notacji wykładniczej:

  5. PRZYKŁADY. PRZYKŁAD 2. Zapisz w notacji wykładniczej: 25,9 ∙ 1012 = 2,59 ∙ 1013 Liczba 25,9 jest większa od 10 więc nie spełnia warunków zapisu w notacji wykładniczej, musimy zatem ją zmniejszyć do liczby 2,59. Robimy to przesuwając przecinek o jedno miejsce w lewo, a więc do wykładnika dziesiątki dodajemy 1 (zwiększamy go o 1). A tak ta operacja wygląda po rozpisaniu: 25,9 ∙ 1012 = 2,59 ∙ 10 ∙ 1012 = 2,59 ∙ 1013 0,0135 ∙ 10-9 = 1,35 ∙ 10-11 Liczba 0,0135 jest mniejsza od 1 więc nie spełnia warunków zapisu w notacji wykładniczej, musimy zatem ją zwiększyć do liczby 1,35. Robimy to przesuwając przecinek o dwa miejsca w prawo, a więc od wykładnika dziesiątki odejmujemy 2 (zmniejszamy go o 2). A tak ta operacja wygląda po rozpisaniu: 0,0135 ∙ 10-9 = 1,35 ∙ 10-2 ∙ 10-9 = 1,35 ∙ 10-11

  6. PRZYKŁADY. PRZYKŁAD 2 – ciąg dalszy. 345 ∙ 1024 = 3,45 ∙ 1026 Liczbę 345 zmniejszyliśmy przesuwając przecinek o dwa miejsca w lewo więc wykładnik dziesiątki zwiększyliśmy o 2. 0,0034 ∙ 10-5 = 3,4 ∙ 10-8 Liczbę 0,0034 zwiększyliśmy przesuwając przecinek o trzy miejsca w prawo więc wykładnik dziesiątki zmniejszyliśmy o 3. 9762,2 ∙ 10-14 = 9,7622 ∙ 10-11 Liczbę 9762,2 zmniejszyliśmy przesuwając przecinek o trzy miejsca w lewo więc wykładnik dziesiątki zwiększyliśmy o 3. 0,007 ∙ 1045 = 7 ∙ 1042 Liczbę 0,007 zwiększyliśmy przesuwając przecinek o trzy miejsca w prawo więc wykładnik dziesiątki zmniejszyliśmy o 3.

  7. DZIAŁANIA NA DANYCH ZAPISANYCH W NOTACJI WYKŁADNICZEJ. Podczas obliczeń na danych zapisanych w notacji wykładniczej należy korzystać z własności działań na potęgach.

  8. PRZYKŁADY. PRZYKŁAD 1. Wykonaj obliczenia, wynik zapisz w notacji wykładniczej: (2,5 ∙ 108) ∙ (8 ∙ 1012) = 2,5 ∙ 108 ∙ 8 ∙ 1012 = =2,5 ∙ 8 ∙ 108 + 12 = 2 ∙ 1020 (6,4 ∙ 108) ∙ (5,2 ∙ 10-14) = 6,4 ∙ 108 ∙ 5,2 ∙ 10-14 = = 6,4 ∙ 5,2 ∙ 108 + (-14) = 33,28 ∙ 10-6 = 3,328 ∙ 10-5

  9. PRZYKŁADY. PRZYKŁAD 2. Wykonaj obliczenia, wynik zapisz w notacji wykładniczej: 5,95 ∙ 1014 + 9,6 ∙ 1012 = 595 ∙ 1012 + 9,6 ∙ 1012 = = (595 + 9,6) ∙ 1012 = 604,6 ∙ 1012 = 6,046 ∙ 1014 Żeby dodać do siebie dwie wielkości zapisane w notacji wykładniczej muszą one mieć takie same wykładniki przy dziesiątce. Gdy wykładniki się różnią możemy przekształcić któreś z wyrażeń tak, aby wykładniki były równe. W naszym przykładzie zwiększyliśmy liczbę 5,95 do 595 przesuwając przecinek o dwa miejsca w prawo a więc wykładnik dziesiątki musieliśmy zmniejszyć o 2 dzięki czemu otrzymaliśmy 1012

  10. PRZYKŁADY. PRZYKŁAD 3. Wykonaj obliczenia, wynik zapisz w notacji wykładniczej: 7,567 ∙ 103 - 4 ∙ 10-2 = 7,567 ∙ 103 – 0,00004 ∙ 103 = = (7,567 – 0,00004 ) ∙ 103 = 7,56696 ∙ 103 W tym przykładzie zmniejszyliśmy liczbę 4 do 0,00004 przesuwając przecinek o pięć miejsc w lewo a więc wykładnik dziesiątki musieliśmy zwiększyć o 5 dzięki czemu otrzymaliśmy 10-2 + 5 = 103

  11. PRZYKŁADOWE ZADANIA. ZADANIE 1. Masa protonu wynosi około 1,7 ∙ 10-27 kg, a masa elektronu 9,1 ∙ 10-31 kg. Ile razy proton jest cięższy od elektronu? Żeby odpowiedzieć na pytanie wystarczy podzielić masę protonu przez masę elektronu : Odpowiedź: Proton jest ok. 1868 razy cięższy od elektronu.

  12. PRZYKŁADOWE ZADANIA. ZADANIE 2. Oblicz objętość sześcianu o krawędzi długości 3 ∙ 10-30 m. Przypomnijmy wzór na objętość sześcianu o boku długości a: V = a3. U nas a = 3 ∙ 10-30 m, stąd mamy: V = (3 ∙ 10-30 )3 = 33 ∙ (10-30)3 = 27 ∙ 10-30 ∙ 3 = 27 ∙ 10-90 = = 2,7 ∙ 10-89 (m3).

  13. PRZYKŁADOWE ZADANIA. ZADANIE 3. Zamień na m2 i zapisz w notacji wykładniczej: • 16 km2 • 40 cm2 a) 1 km = 1000 m 1 km2 = (1000 m)2 = 1000000 m2 = 106 m2 16 km2 = 16 ∙ 106 m2 = 1,6 ∙ 107 m2 b) 1 cm = 0,01 m 1 cm2 = (0,01 m)2 = 0,0001 m2 = 10-4 m2 40 cm2 = 40 ∙ 10-4 m2 = 4 ∙ 10-3 m2

  14. PRZYKŁADOWE ZADANIA. ZADANIE 4. Przyjmując, że odległość Ziemi od Słońca jest równa 1,5 ∙ 1011 m a prędkość światła wynosi 300 000 km/s, oblicz, w jakim czasie światło dociera ze Słońca na Ziemię. Wynik podaj w minutach i sekundach. Najpierw należy zapisać prędkość światła w notacji wykładniczej i zamienić jednostkę na m/s: 300 000 km/s = 3 ∙ 105 km/s 1 km = 1000 m = 103 m 3 ∙ 105 km/s = 3 ∙ 105 ∙ 103 m/s = 3 ∙ 108 m/s .

  15. PRZYKŁADOWE ZADANIA. ZADANIE 4 – ciąg dalszy. W celu wyliczenia czasu, w jakim światło dociera ze Słońca na Ziemię dzielimy odległość Słońca od Ziemi przez szybkość światła (t = s : v): Otrzymany wynik – 500 s – zamieniamy na minuty dzieląc przez 60: Odpowiedź: Czas, w jakim światło dociera ze Słońca na Ziemię wynosi 8 min 20 s.

  16. DUŻE LICZBY W NOTACJI WYKŁADNICZEJ. Formalnie przed każdą potęgą powinno znajdować się „1 ∙ ” ale pominięcie mnożenia przez 1 nie zmienia wartości liczby a upraszcza zapis.

More Related