270 likes | 802 Views
Study of Hafnium Dioxide (HfO 2 ) by Atomic Layer Deposition (ALD). Yen Chin Woo Master of Science in Electrical Engineering Instructor Professor Beth Stadler December 6, 2005. Outline. Background Choice of High- κ Dielectric Comparison of Deposition Methods
E N D
Study of Hafnium Dioxide (HfO2) by Atomic Layer Deposition (ALD) Yen Chin Woo Master of Science in Electrical Engineering Instructor Professor Beth Stadler December 6, 2005
Outline • Background • Choice of High-κ Dielectric • Comparison of Deposition Methods • Advantages of Atomic Layer Deposition • Precursors • Fabrication Method • Film structure • Applications of Atomic Layer Deposition
-Si -Si SiO2 SiO2 NMOS PMOS Background Ultra Large Scale Integration Physical Limitation • CMOS: Two types of transistors • NMOS: negatively doped silicon, rich in electrons. • PMOS: positively doped silicon, rich in holes (the DUAL of electrons). • Downsizing of CMOS requires smaller dimensions • SiO2 (κ = 3.9) is currently used as dielectric layer • Problem • Oxide thickness less than 2.3nm produces considerable off-state leakage current • High leakage currents: result of electron tunneling through SiO2 film • Other reliability issues • Solution • ↑ capacitance of the dielectric layer lead to ↓ current leakage • where C = κεA/d Thompson, Scott, MOS Scaling: Transistor Challenges for the 21st Century, Intel Tech. J., 1998
Choice of High-κ Dielectric Material 5 conditions - • High enough dielectric constant κ • Stable - no reaction with Si • Oxides with high heat of formation • Preferred –HfO2, Zr, Y, La, Al • Stable up to 1050°C • Low diffusion • Wide band gap for low leakage • Good interface, low impurities, traps Source: J. Robertson * HfO2 is the most promising candidate http://www.cambridgenanotech.com
Comparison of Thin Film Deposition Methods ALD = atomic layer deposition, MBE = molecular beam epitaxy. CVD = chemical vapor deposition, PLD = pulsed laser deposition. http://www.cambridgenanotech.com
Advantages of Atomic Layer Deposition Mikko Ritala and Markku Leskelä, “Atomic layer epitaxy - a valuable tool for nanotechnology?” Nanotechnology10 (1999) 19-24
Precursors • Must be volatile and thermally stable to ensure efficient transportation • Must chemisorb onto surface or rapidly react with surface • Cannot self-decomposes • Should not etch or dissolute into the film or substrate • Vapor Pressure of Precursors • Must be high enough to completely fill the deposition chamber • Precursor Choices: • Hafnium (IV) Chloride (HfCl4) + H2O • Hafnium (IV) Iodide (HfI4) + H2O • Hafnium Tetrakis(enthylmethylamide) + H2O • Hafnium (IV) Tert-butoxide + H2O • Hafnium Tetrakis(diethylamido) + H2O • Hafnium Tetrakis(dimethylamido) + H2O
Fabrication Method Example: Overall reaction HfCl4 + 2H2O → HfO2 + 4HCl
HfCl4+H2O HfI4+H2O 300°C 300°C r.m.s = 2.3nm r.m.s = 1.8nm Hf[N(CH3)(C2H5)]4 + H2O 200°C 300°C r.m.s = 7.9nm r.m.s = 3.9nm Film Structure [1] Kaupo Kukli, Mikko Ritala, Timo Sajavaara, Juhani Keinonen and Markku Leskelä “Comparison of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursors,”Thin Solid Films 416(2002) 72-79 [2]Kaupo Kukli, Mikko Ritala, Timo Sajavaara, Juhani Keinonen and Markku Leskela, “Atomic layer Deposition of Hafnium Dioxide Films from Hafnium Tetrakis(enthymethylamide) and Water,” Chem. Vap. Deposition 8 (2002) 199-204
Applications of ALD Financial Viability in the coming years: • Transistor Gate Dielectrics • MEMS • Opto-electronics • Diffusion Barriers • Flat-Panel Displays • Organic Light Emitting Diodes (OLED) • Interconnect Seed Layer • DRAM and MRAM dielectrics • Embedded capacitors • All thin films (<90nm) • Electromagnetic recording heads
“Q & A” Thank You