370 likes | 630 Views
A next generation neutrino telescope. KM3NeT. Els de Wolf Nikhef /University of Amsterdam on behalf of the KM3NeT consortium TeVPA 2008, 27 September 2008. What is KM3NeT?. Acronym for KM3Ne utrino T elescope A research facility in the Mediterranean Sea
E N D
A next generation neutrino telescope KM3NeT Els de Wolf Nikhef/University of Amsterdam on behalf of the KM3NeT consortium TeVPA 2008, 27 September 2008
What is KM3NeT? • Acronym for KM3Neutrino Telescope • A research facility in the Mediterranean Sea • Cubic kilometre size neutrino telescope • Cabled observatory for Earth and Marine sciences Els de Wolf
KM3NeT consortium 38 institutes from: Cyprus, France, Germany, Greece, Ireland Italy, Netherlands, Romania, Spain, UK +.. + + Els de Wolf
KM3NeT Observable Sky • 2π downward sensitivity assumed • Visibility Galactic Centre 66% > 75% > 25% • Angular resolution for E>10 TeV: ~0.1o
Conceptual Design Report • Made public April 2008 at VLVnT workshop in Toulon • Being printed (already at www.km3net.org) • Includes (a.o.): Science case Site studies Design goals Technical implementation Els de Wolf
Science case • Neutrino astroparticle physics • Galactic and Extragalactic point sources • Diffuse neutrino flux • Dark Matter and exotics • Neutrinos from Dark Matter annihilation • Magnetic monopoles, nuclearites, strangelets, … • Neutrino and particle physics (~105νatm/year) • UHE neutrino cross sections • Muons (≥ 108μatm/year) • Prompt muons from heavy meson decay • Earth and marine sciences • Long-term, continuous measurements in deep-sea Els de Wolf
Reference detector NOT the final design • Geometry (~1 km3): • 15 x 15 vertical detection units on rectangular grid • 1 OM per storey • 21 PMTs (3”) per OM • Horizontal OM-distance 95 m • Vertical OM-distance 15.5 m Effective Area Els de Wolf
Point source sensitivity • Muon energy reconstruction perfect • Neutrino energies 1 TeV – 1 PeV • ~50 times better than ANTARES • ~3 times better than IceCube: • Larger photocathode area • Better angular resolution • Thesis S. Kuch, Erlangen Els de Wolf
Diffuse flux • Assuming E-2neutrino energy spectrum • No energy reconstruction Els de Wolf
RXJ1713.7 3946 • Candidate for hadronic acceleration • Source extension Φ ~ 1.3° • ~75% of the time below the horizon → in 5 years: 5 neutrinos over 15 background events Kappes et al, astro-ph/0607286 Dornic et al, astro-ph/0711.2145 Els de Wolf
GRB080319 (z~0.94) • 0.5 events ± 1 order of magnitude uncertainty, very large model uncertainty • Contribution GRBs to diffuse flux: few 10 neutrinos per year • Slow jet model of core collapse SN seems promising for neutrino detection Predicted neutrino spectrum Dornic et al, NIM Physics A Els de Wolf
Auger’s “Cen A” • Neutrino flux from Cen A (~4 Mpc) • Assuming 2 CR detected in a window of 3.2 degrees • Few to several 10-3 neutrinos per year (very model dependent) Els de Wolf
Dark matter sensitivity • Scan mSUGRA parameter space • Focus on pointscompatible withWMAP data • Detectability: • Blue: ANTARES • Green: KM3NeT Els de Wolf
Earth and marine sciences • Longterm, continous measurements will open new applications • KM3NeT will be a node in network for monitoring European coasts • Sampling rates of order kHz i.s.o. 1/min or 1/hour Els de Wolf
A few examples Site Studies
Bioluminescence • Density of bioluminescence sources as function of depth estimated from measurements • Deeper -> less BL Black: east Med. Sea. Grey: west Med. Sea. Els de Wolf
Water transparency Using 460 nm light source Normalised to 2850 m depth Capo Passero Sicily, Italy Pylos Greece Also: sea currents, sedimentation, biofouling, radioactivity,… Els de Wolf
Green power concept • Use solar or wind energy at shore station • 4.4 GWh/year during operation • Requires investment of 4-5 M€ • Only feasible if coupled to larger power network Wind map Els de Wolf
Design goals • Substantially better sensitivity than IceCube • > 1 km3 • Core process: nm+N m+X at neutrino energies beyond 100 GeV • Construction and deployment < 4 years • Data taking period > 10 year • Optimised for energy range 1 TeV – 1 PeV • Angular resolution < 0.1o • Zenith angle: • Full acceptance for neutrinos originating from directions up to at least 10° above the horizon • For energies > 100 TeV angular acceptance limited only by the absorption of the Earth Els de Wolf
A few examples Technical implementation
Detection Unit design options • With horizontal structures • > 2 OMs per storey • 1 large(10”) PMT per OM • Copper/fiber readout • No horizontal structures • 1 OM per storey • 31 small (3”) PMTs per OM • Fiber readout Cost and reliability studied Further constraint towards final decision for TDR
Optical Module design options 31 x 3” PMTs 1 x 10” PMT 17”glass container Improved Antares OM with electronics inside Possibly with 13” glass container 17” glass container High 2 photon purity (sea background) Looking ~upwards (atm. muons) Large photocathode area 17” glass container 4 anodes + mirrors Direction sensitive Further simulations required Costs and reliability studied Els de Wolf
Quasar 370 (Baikal) R&D continues • Hybrid solution: scintillator+small PMT • Send photo electrons on scintillator • Detect scintillator light with small PMT • Very good photo-electron counting • Large angular sensitivity • CERN/Photonis/CPPM development Els de Wolf
Compact deployment Using ships (lease or buy) or the Delta Berenike platform
Sub-sea infrastructure • Also: power network and data network (redundancy) • Remotely operated vehicle • (lease or buy) • Autonomous Undersea vehicle • (buy) • Junction boxes • (self made or buy) Els de Wolf
Readout/DAQ design options Wire/Fiber mix Fiber only • Copper in vertical cable • Special ASIC off-shore • Possibly local coincidences off-shore • Time-stamp off-shore • Fibers in vertical cable • Continuous sampling of TDC signal • Minimal electronics off-shore • Local coincidences on-shore • Time stamp on-shore or off-shore Cost and reliability studied Further constraint towards final decision for TDR Els de Wolf
Preparatory Phase • New EU/FP7 funding instrument restricted to projects on the ESFRI roadmap • KM3NeT proposal endorsed with 5 M€ • 3-year project 2008-2011 • Objectives: • Definition of legal structure & governance • Political convergence: site issue & funding • Strategic issues: new partners, extendibility detector, multiple sites,… • Operational phase: organisation & user communities • Pre-procurement with industrial partners • System prototyping Els de Wolf
Summary • Science case of KM3NeT shown: • Neutrino (astro)particle physics • Marine and Earth sciences • Conceptual Design Report KM3NeT published • Technical Design Report foreseen in October 2009 • Working towards start of construction in 2011 • KM3NeT will be a new generation facility: • Point source sensitivity ~50 times that of ANTARES • Point source sensitivity ~3 times that of IceCube • Complementary with IceCube in field of view • New opportunities for marine and earth sciences • KM3NeT considers the concept of green energy • New groups are more than welcome! Els de Wolf
New groups are welcome! Thank you! Els de Wolf
Detector requirements for technologies Els de Wolf
Three possible sites • In Mediterranean Sea • All suitable with pros and cons: • ANTARES,France • NEMO, Sicily • NESTOR, Greece • Decisionrequiresscientific, technologicalandpoliticalinput Els de Wolf
Configuration Studies • None optimal for ALL energies and directions • Deployment and subsea-infrastructure also plays a role in decision
Ass0ciated sciences • Devices installed around telescope • Issues • Interfaces • Interference during data taking • Synergy effects: • Sharing environmental data Els de Wolf
Higher Quantum Efficiency Hamamatsu Photonis • 2 x higher Q.E. -> 2 x larger photocathode area • Major gain in sensitivity ~43% ~55% Els de Wolf
Earth and marine sciences E.g.studies of • Large-scale ocean circulation • Specific processes, e.g. internal waves • Effects on sediment and nutrients redistribution • Bio-acoustics • … Temperature [12.3, 14.1]C Height ab. bottom (m) H. vanHaren, NIOZ Els de Wolf yearday