1 / 8

Tema 6.3 * 4º ESO Opc B

Tema 6.3 * 4º ESO Opc B. CUADRANTES Y ÁNGULOS. Ángulos y Cuadrantes. π /2 rad. 90º. Cuad. I. Cuad. II. 0 rad. r=1. 0º. 180º. α. π rad. 360º. Cuad. III. 2 π rad. Cuad. IV. 270º. 3 π /2 rad.

barid
Download Presentation

Tema 6.3 * 4º ESO Opc B

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tema 6.3 * 4º ESO Opc B CUADRANTES Y ÁNGULOS Matemáticas 4º ESO Opción B

  2. Ángulos y Cuadrantes π/2 rad 90º Cuad. I Cuad. II 0 rad r=1 0º 180º α π rad 360º Cuad. III 2π rad Cuad. IV 270º 3π/2 rad Circunferencia goniométrica es la que tiene por radio la unidad. Es la empleada en trigonometría. Matemáticas 4º ESO Opción B

  3. Líneas trigonométricas • LÍNEAS TRIGONOMÉTRICAS • El seno de un ángulo en el primer cuadrante es AB/r , pero al ser r=1, el valor del seno coincide con la ordenada del punto A, o sea con la línea o segmento AB • sen α = AB • Lo mismo pasa con el coseno de un ángulo en el primer cuadrante. • cos α = OB • De forma similar ocurre con la tangente de un ángulo del primer cuadrante. • tg α = CD • En la circunferencia goniométrica las razones trigonométricas se transforman en líneas trigonométricas, lo que permite visualizar su valor. C A r=1 α O B D Matemáticas 4º ESO Opción B

  4. Valor y signo en 1º Cuadrante • RAZONES EN EL PRIMER CUADRANTE • Se puede ver que al aumentar al ángulo, de 0º a 90º, el valor del seno (en color rojo) aumenta de 0 a 1. • Asimismo vemos que siempre queda por encima del eje de abscisas, por lo que su valor es siempre positivo. • 0 < sen α < 1 • También se puede ver que al aumentar al ángulo, de 0º a 90º, el valor del coseno (en color verde) disminuye de 1 a 0. • Asimismo vemos que siempre queda a la derecha del eje de ordenadas, por lo que su valor es siempre positivo. • 1 > cos α > 0 90º β α 0º 180º 270º Matemáticas 4º ESO Opción B

  5. Valor y signo en 2º Cuadrante • RAZONES EN EL SEGUNDO CUADRANTE • Se puede ver que al aumentar al ángulo, de 90º a 180º, el valor del seno (en color rojo) disminuye de 1 a 0. • Asimismo vemos que siempre queda por encima del eje de abscisas, por lo que su valor es siempre positivo. • 1 > sen α > 0 • También se puede ver que al aumentar al ángulo, de 90º a 180º, el valor del coseno (en color verde) disminuye de 0 a – 1. • Asimismo vemos que siempre queda a la izquierda del eje de ordenadas, por lo que su valor es siempre negativo. • 0 > cos α > – 1 90º α β 0º 180º 270º Matemáticas 4º ESO Opción B

  6. Valor y signo en 3º Cuadrante • RAZONES EN EL TERCER CUADRANTE • Se puede ver que al aumentar al ángulo, de 180º a 270º, el valor del seno (en color rojo) disminuye de 0 a – 1. • Asimismo vemos que siempre queda por debajo del eje de abscisas, por lo que su valor es siempre negativo. • 0 > sen α > – 1 • También se puede ver que al aumentar al ángulo, de 180º a 270º, el valor del coseno (en color verde) aumenta de – 1 a 0. • Asimismo vemos que siempre queda a la izquierda del eje de ordenadas, por lo que su valor es siempre negativo. • – 1 < cos α < 0 90º 0º 180º α β 270º Matemáticas 4º ESO Opción B

  7. Valor y signo en 4º Cuadrante • RAZONES EN EL CUARTO CUADRANTE • Se puede ver que al aumentar al ángulo, de 270º a 360º, el valor del seno (en color rojo) aumenta de – 1 a 0. • Asimismo vemos que siempre queda por debajo del eje de abscisas, por lo que su valor es siempre negativo. • – 1 < sen α < 0 • También se puede ver que al aumentar al ángulo, de 270º a 360º, el valor del coseno (en color verde) aumenta de 0 a 1. • Asimismo vemos que siempre queda a la derecha del eje de ordenadas, por lo que su valor es siempre positivo. • 0 < cos α < 1 90º 0º 180º β α 270º Matemáticas 4º ESO Opción B

  8. Valor y signo en los Vértices • RAZONES EN VÉRTICES • Como vemos los vértices son los límites geométricos del seno y coseno de un ángulo. • Por lo tanto: • 0 ≤ |sen α| ≤ 1 • 0 ≤ |cosα| ≤ 1 • El valor de la tangente, sin embargo, no está limitada, pudiendo tomar valores entre –oo y +oo, dependiendo del cuadrante del ángulo. sen 90º=1 cos 90º=0 sen 0º=0 sen 180º=0 α cos 180º= -1 cos 0º=1 sen 270º= -1 cos 270º= 0 Matemáticas 4º ESO Opción B

More Related