50 likes | 563 Views
Modul 8 Stattistika & Probabilitas 1. Nilai Kemungkinan 1.1 Nilai kemungkinan suatu peristiwa Dalam teori kemungkinan banyak ditemui dan dibicarakan masalah peristiwa atau kejadian, terjadi atau tidaknya peristiwa itu, dan cara menentukan nilai
E N D
Modul 8 Stattistika & Probabilitas 1. Nilai Kemungkinan 1.1 Nilai kemungkinan suatu peristiwa Dalam teori kemungkinan banyak ditemui dan dibicarakan masalah peristiwa atau kejadian, terjadi atau tidaknya peristiwa itu, dan cara menentukan nilai kemungkinan terjadinya. Banyak peristiwa yang mungkin terjadi tetapi yang kita perhatikan bisa jadi hanya beberapa saja. Biasanya bagi suatu peristiwa yang kita inginkan, kita akan berusaha mencari dalam beberapa carakah peristiwa itu bisa terjadi. Nilai kemungkinannya kita rumuskan sebagai berikut. Jika peristiwa A yang kita inginkan dapat terjadi menurut r cara dari antara n cara keterjadian, dan n cara ini mempunyai peluang yang sama untuk terjadi (equally likely), maka nilai kemungkinan peristiwa A ialah dan ditulis P(A) = . Menentukan nilai kemungkinan. Langkah yang dapat ditempuh untuk memudahkan pencarian nilai kemungkinan suatu peristiwa A ialah sebagai berikut. Langkah pertama menentukan semua hal yang bisa terjadi, misalnya ada n hal. Semua hal yang bisa terjadi itu disebut titik sampel. Langkah kedua menentukan nilai kemungkinan setiap titik sampel. Jika setiap titik sampel mempunyai peluang sama untuk terjadi, nilai kemungkinannya . Langkah ketiga mencari titik sampel yang termasuk dalam peristiwa A, misalanya ada r buah. Maka P(A) = . Beberapa ketentuan yang perlu diperhatikan. 1. Dalam buku ini banyak dijumpai persoalan seperti melemparkan mata uang, dadu, dan sisi empat. Kita selalu menganggap semua benda itu tangkup atau tidak berat sebelah sehingga dapat dianggap peluang bagi suatu sisinya berada di atas atau di bawah setelah jatuh dari pelemparan adalah sama. http://www.mercubuana.ac.id
(a) Ada 6 hal yang bisa terjadi, yang masing-masing mempunyai peluang sama, sehingga P(5) = . (b) Pada peristiwa dadu menunjukkan angka 3 atau lebih, A = {3,4,5,6} memuat 4 titik sampel sehingga P(A) = . 3. Diambil sebuah kartu dari selengkap kartu bridge terkocok. Tentukanlah nilai kemungkinan terambilnya kartu (a) As ; (b) Raja (dengan lambang K) ; (c) Gambar ‘daun’ Penyelesaian Ruang sampelnya terdiri dari 52 titik sampel yang masing-masing mempunyai peluang sama. (a) Ada 4 kemungkinan kartu As terambil, sehingga P(As) = (b) Ada 4 kemungkinan kartu Raja terambil, sehingga P(K) = . (c) Ada 13 kemungkinan kartu gambar ‘daun’, sehingga P(kartu ‘daun’)= . 4. Dari baskom yang berisi 7 bola merah, 5 bola biru, dan 3 bola hitam diambil sebuah di antaranya. Tentukanlah nilai kemungkinan bola yang diambil (a) Merah; (b) Biru; (c) Hitam. Penyelesaian Misalkan peristiwa terambilnya bola merah, biru, dan hitam berturut-turut diberi lambang M, B, dan H. Maka (a) P(M) = (b) P(B) = (c) P(H)= = = . = = = . = . 5. Suatubaskomberisi 10 bola pingpong yang masing-masingdiberinomor 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Dari dalamnyadiambilsatu bola. Tentukanlahnilai kemungkinanterambilnya bola bernomor (a) Bilangan prima ; (b) Bilangan yang habisdibagi 2; http://www.mercubuana.ac.id
(a) nilai kemungkinan hasil lemparan pertama genap dan kedua gasal ialah p = (b) p = = = ; dan 9 6 1 4 = (c) p = . 8. Dari soal 7 di atas, tentukan nilai kemungkinan jumlah angka yang tampak dari dua kali lemparan itu ialah (a) 5 ; (b) 10; dan (c) Kurang dari 11. Penyelesaian Misalkan J = jumlah angka yang tampak pada lemparan pertama dan kedua. Dengan pertolongan Tabel 1.1, didapat 4 36 (a) P(J = 5) = ; 3 36 33 36 (b) P(J = 10) = (c) P(J ≤ 11) = ; ; 9. Pengantin baru mengatakan bahwa mereka menginginkan 3 orang anak dari pernikahannya. Bila keinginannya terpenuhi, tentukanlah nilai kemungkinan bahwa anaknya (a) wanita semua; (b) satu pria dan dua wanita; (c) pria semua. Penyelesaian Urutan kelahiran yang bisa terjadi dapat disusun sebagai berikut PPP PPW PWP WPP PWW WPW WWP WWW Dimana PWP = anak pertama pria, kedua wanita, dan ketiga pria. Jadi di sini ada 8 kejadian yang berpeluang sama, maka 1 8 (a) P (wanita semua) = ; 3 8 (b) P (1 pria) = ; http://www.mercubuana.ac.id