1 / 48

Pensamiento probabilístico . María Puy Pérez Echeverría & Alfredo Bautista (2008)

Pensamiento probabilístico . María Puy Pérez Echeverría & Alfredo Bautista (2008). Clases Teóricas 2012 Ana María Talak Universidad Nacional de La Plata. Temas a tratar:. 1) El pensamiento en un mundo probabilístico. 2) El origen del razonamiento probabilístico. 3) Los heurísticos.

Download Presentation

Pensamiento probabilístico . María Puy Pérez Echeverría & Alfredo Bautista (2008)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pensamiento probabilístico.María Puy Pérez Echeverría & Alfredo Bautista (2008) Clases Teóricas 2012 Ana María Talak Universidad Nacional de La Plata

  2. Temas a tratar: 1) El pensamiento en un mundo probabilístico. 2) El origen del razonamiento probabilístico. 3) Los heurísticos. 4) Los expertos.

  3. 1.1. El pensamiento en un mundo de probabilidades. • Razonamiento probabilístico - Consiste en hacer un cálculo mental sobre las probabilidades de que vaya a ocurrir un acontecimiento, o de que haya ocurrido. • Se realiza en un contexto de toma de decisiones y de juicios

  4. Deducción • Tareas cerradas y bien delimitadas • Seguridad en que la conclusión se obtiene a partir de las premisas Inducción • Se obtienen reglas generales a partir de situaciones concretas • Problemas abiertos y no muy bien delimitados • No hay seguridad en la obtención de la conclusión.

  5. Razonamiento cotidiano • Carácter incierto • Necesita integrar y aplicar grandes cantidades de conocimientos • A un contexto conocido solo parcialmente y rápidamente cambiante

  6. Razonamiento probabilístico • Estaría determinado por la necesidad de adaptarnos a este tipo de contexto. • Hoy se entiende el mundo como un conjunto de relaciones entre azar y necesidad.

  7. Los procesos inductivos están relacionados con la incertidumbre en 2 sentidos: 1) Los procesos mentales de razonamiento probabilístico habrían surgido luego de muchos años de selección y adaptación a un mundo cambiante. 2) Este tipo de conocimiento de la variabilidad permite reducir la incertidumbre.

  8. 1.2. “Racionalidad probabilística”. • Razonamiento probabilístico como un tipo particular de razonamiento inductivo. • Racionalidad lógica ≠ racionalidad probabilística

  9. 1) El pensamiento en un mundo probabilístico. 2) El origen del razonamiento probabilístico. 3) Los heurísticos. 4) Los expertos.

  10. Racionalidad probabilística • Razonamientos cotidianos • Toma de decisiones en situaciones complejas y de riesgo • - personales • - profesionales • Explica lo que la lógica formal llama errores o sesgos en las tareas lógicas.

  11. Los “errores”: serían inferencias “razonables” desde la teoría de las probabilidades. Las teorías más logicistas • Han sido compatibles con gran parte de las teorías psicológicas de la mente humana del siglo XX (teoría del desarrollo de Piaget, modelos clásicos de P.I.) Las teorías de las probabilidades • Más compatibles con los modelos psicológicos actuales (Modelos neoconexionistas y trabajos de IA y de semántica del lenguaje)

  12. Razonamiento probabilístico: • Subyace a la mayor parte de las actividades mentales cotidianas. • Herramienta para enfrentar la incertidumbre. • Nos lleva a soluciones adecuadas y razonables. • Decidir si algo es un “error” depende más de la posibilidad de adaptarnos eficazmente a la variabilidad ambiental y a la incertidumbre, que de la aplicación de reglas de la lógica formal.

  13. 2. El origen del razonamiento probabilístico. • Diferentes teorías • Teoría del desarrollo de Piaget • Teoría de las intuiciones primarias y las intuiciones secundarias de Fichsbein (1975) - Teoría del aprendizaje implícito asociacionista, de Hogarth (2001)

  14. Piaget • Nociones de azar y probabilidad → relación entre lo posible y lo real. • Pensamiento formal → considera lo real como un subconjunto de lo posible • Realizar un cálculo probabilístico →es convertir la relación entre lo real y lo posible en un cálculo matemático o razonamiento lógico (operaciones formales) • Edades más tempranas → se van formando esquemas que anteceden el concepto de probabilidad.

  15. Críticas a la visión logicista del pensamiento. • Aportes: 1) El análisis de los componentes del razonamiento probabilístico sigue siendo válido (relaciones con las dificultades de los profesores al enseñar la probabilidad). 2) La comprensión de las teorías matemáticas de la probabilidad requiere un pensamiento formal (se adquiera por desarrollo o por instrucción deliberada y consciente).

  16. Intuiciones primarias e intuiciones secundarias de Fichsbein (1975): • Intuiciones primarias • Están ligadas a la acción • Surgen de la experiencia física y social con el mundo • Intuiciones secundarias • surgen tras un período sistemático de instrucción • Permiten superar las intuiciones primarias mediante esfuerzo cognitivo

  17. Origen del pensamiento probabilístico: • 1º) En las intuiciones primarias →nuestra conducta es probabilística por naturaleza → en nuestra experiencia en un mundo incierto, azaroso, probable (aprendizaje implícito) • 2º) Estas reglas aprendidas en forma tácita son la base para aprender las reglas matemáticas de la probabilidad.

  18. Estudios sobre cambio conceptual: • La instrucción no es suficiente para modificar totalmente las intuiciones primarias. • Primacía de las representaciones implícitas sobre las explícitas • Dificultades del cambio conceptual.

  19. Hogarth (2001) • El origen del razonamiento probabilístico es intuitivo. • Respuesta intuitiva: → Se obtiene sin esfuerzo y deliberación y habitualmente sin conciencia. →Aprendizaje por experiencia Establecemos conexiones entre cosas que ocurren juntas; estas conexiones se fortalecen en la memoria (predisposición genética, motivación, frecuencia) → aprendizaje implícito

  20. Hogarth (2001) • Aprendizaje por experiencia (tácito) ↳A partir de sucesos que ocurren ↳ Lo que no ocurre o no percibimos no lo computamos. • Esto da lugar a los sesgos y errores de los juicios probabilísticos. • Pero →El conocimiento intuitivo puede educarse.

  21. 3. Las intuiciones probabilísticas. Los procesos heurísticos. 1) El heurístico de representatividad. 2) El heurístico de accesibilidad. Críticas a la teoría de heurísticos.

  22. Los procesos heurísticos. • Estudiados por Tversky & Kahneman (1974) - Son reglas básicas de inferencia probabilística - Utilizadas por adultos - Independientes de : * la cultura, * el conocimiento de las leyes matemáticas de la probabilidad * o del contenido que se esté analizando.

  23. En la Matemáticas → procedimientos para resolver problemas. Heurísticos • Vaguedad • Falta de precisión Algoritmos • No vaguedad • Precisión

  24. En psicología, los heurísticos: • Son mecanismos por los cuales reducimos la incertidumbre (complejidad de estímulos del mundo) • A una dimensión manejable por nuestro sistema cognitivo. • Supuesto: el mundo tiene una estructura probabilística.

  25. Limitaciones de nuestro sistema: • Procesos atencionales • Procesos de memoria • Limitaciones de la memoria de trabajo

  26. Los juicios heurísticos: • Son principios generales que reducen tareas complejas a juicios simples • No implican un análisis exhaustivo de datos • Enfatizan ciertas características de los datos e ignoran otras • Nos permiten tomar decisiones RAZONABLES con poco esfuerzo.

  27. Errores, sesgos • Irracionalidad en la toma de decisiones • Ventajas • Resultan suficientes para resolver problemas concretos. • No buscan la verdad

  28. Los heurísticos dependen de: El tipo de proceso cognitivo implicado ↓ Heurístico de representatividad El acceso a la información ↓ Heurístico de accesibilidad

  29. El heurístico de representatividad • Relación entre un proceso o un modelo y algún ejemplo o acontecimiento relacionado con ese modelo. • Se valora el grado de semejanza • Es direccional (se valora en qué medida una muestra es representativa de un modelo pero no al revés).

  30. 4 casos de representatividad: • Cuando M es una clase y X una variable o valor definido en esa clase. • Cuando M es una clase y X es un ejemplo de esa clase. • Cuando M es una clase y X es un subconjunto de esa clase. • Cuando M es un sistema causal y X una posible consecuencia.

  31. Semejanza: • Un ejemplo es representativo de una categoría cuando tiene los mismos rasgos principales que tienen los miembros prototípicos de esa categoría • Y no tiene otros rasgos no compartidos por esos miembros.

  32. Los ejemplo prototípicos: • Son mejor recordados y más fácilmente reconocidos que los elementos menos representativos. • Usamos la representatividad para predecir resultados, para establecer causas, para hacer inferencias probabilísticas,

  33. Errores más habituales producidos por el heurístico de representatividad: • Concepción errónea sobre el azar. • Confusión en la utilización de la ley de los grandes números. • Problemas con las probabilidades compuestas. • Problemas en la comprensión del concepto de regresión.

  34. El heurístico de accesibilidad. • Se estima la probabilidad a partir de la facilidad con que los ejemplos o asociaciones vienen a nuestra mente. • Supuesto: cuanto mejor recuerdas un suceso, más frecuente ha sido ese suceso y por lo tanto más probable.

  35. El heurístico de accesibilidad. • Al evaluar un suceso, no tenemos acceso en general a muestras representativas de acontecimientos. Por lo tanto, construimos esas muestras en nuestra mente (a partir de nuestra memoria). • La familiaridad y la prominencia son factores que pueden sesgar estas mentes.

  36. Errores más habituales producidos por el heurístico de accesibilidad: • Por la prominencia de los datos. • Por la singularidad de los datos o por coincidir con nuestras teorías previas. • Por la primacía de los datos. • Correlación ilusoria.

  37. Correlación ilusoria: • Creer que existe una relación entre dos acontecimientos cuando no la hay.. • Las personas se centran en los casos en que esos acontecimientos concurren, pero no se fijan en los casos en los que ocurre uno solo. • “Ilusión de control”

  38. Problemas de estas investigaciones: 1)Los heurísticos son implícitos. - Pero las tareas para investigarlos suponen conocimiento declarativo, consciente. 2)Se proponen problemas muy artificiales - No queda claro para los participantes el objetivo de la tarea.

  39. Críticas a las teorías de Tversky y Kahneman: 1) Críticas a la presentación del trabajo experimental. • Las tareas son engañosas, los datos relevantes están escondidos. • Cuando se presenta información de manera estadística se cometen menos sesgos. • No se realiza ningún trabajo estadístico sobre la significación de los resultados.

  40. Críticas a las teorías de Tversky y Kahneman: 2) Críticas a la universalidad de los sesgos: • Los expertos en estadística o en toma de decisiones cometen menos sesgos. • Las personas con conocimiento sobre el contenido de la tarea cometen menos sesgos. • Los sesgos dependen de las tareas y de las creencias y conocimientos sobre esas tareas.

  41. Críticas a las teorías de Tversky y Kahneman: 3) Críticas a la ambigüedad de la teoría: • La teoría de T & K es más descriptiva que explicativa. • No se puede distinguir s actuará el heurístico de representatividad o de accesibilidad.

  42. Críticas a las teorías de Tversky y Kahneman: • Problema relación explícito – implícito • Confusión entre información – conocimiento.

  43. 4. Expertos. Pericia (en el campo de conocimientos complejos) Es un viaje de ida y vuelta entre lo implícito y lo explícito.

  44. Los expertos educan sus intuiciones en dos sentidos: 1) Automatizan gran cantidad de decisiones y procesos de razonamientos en los contenidos de su experticia (conocimiento deliberado convertido en tácito). 2) Tienen experiencia en contextos privilegiados; sus intuiciones se acercan más a las normas probabilísticas.

  45. Expertos • Utilizan más conocimiento • Reducen desde el principio los problemas de manejo de gran cantidad de datos a dimensiones manejables • Cuentan con estrategias metacognitivas y procedimientos de repaso, Novatos • Utilizan más información • Toman en cuenta gran cantidad de datos y de relaciones entre esos datos. • Menor automatización de reglas

  46. Expertos →deben adaptarse a: • Las restricciones de las tareas • Las metas que se proponen • Las consecuencias contextuales de sus decisiones • Pericia en la toma de decisiones depende de: • Factores de razonamiento inductivo • Recuerdo de conocimientos adecuados • Desarrollo de esquemas de conocimientos.

  47. Temas tratados: 1) El pensamiento en un mundo probabilístico. 2) El origen del razonamiento probabilístico. 3) Los heurísticos. 4) Los expertos.

  48. Conclusiones: • No existe aún una teoría integradora. • Desde los años `60 • Pensamiento → - Contenido concreto - Objetivos concretos - Contexto y cultura concretos.

More Related