210 likes | 359 Views
Mathematik zum Anfassen. Überblick. Meine Motivation Klassen- und Schulsituation Montessori Ausbildung Setzt die Mathematik nicht viel zu hoch an? Muss Mathematik der Angstgegenstand sein? NWW und IMST3 Projekte. Durchführung „Offene Lerneinheiten“ in der 1.Klasse 2 Stunden am Nachmittag
E N D
Meine Motivation • Klassen- und Schulsituation • Montessori Ausbildung • Setzt die Mathematik nicht viel zu hoch an? • Muss Mathematik der Angstgegenstand sein? • NWW und IMST3 Projekte
Durchführung „Offene Lerneinheiten“ in der 1.Klasse • 2 Stunden am Nachmittag • Nur eine Hälfte der Klasse (18 Schüler) • Rahmenbedingungen • Selbstständiges Arbeiten mit Materialien • Durchführung von Selbstkontrolle • Freie Wahl des Arbeitsplatzes • Freie Wahl der Arbeitsgruppe • Zusatzangebot - Hausübung und Übungen • Meine Rolle - Arbeitsbegleitung und nicht Belehrung
Kriterien der Materialienauswahl • Unterstufenstoff neu „verpackt“ • Termumformungen • Geometrie • Didaktische Prinzipien
Didaktische Prinzipien Problemlösendes Lernen Ordne Lege um Suche Zusammenhang
Didaktische Prinzipien Mathematisches Experimentieren Wer kommt am weitesten raus?
Didaktische Prinzipien Aufstellen von Formeln
Arbeitsblatt: Konvexe Polygone zum Material Nagelbrett Bau dir ein unregelmäßiges 5-Eck. Überlege durch Spannen von Gummibändern die Anzahl aller möglichen Diagonalen (Verbindungen der Eckpunkte, die nicht mit den Seiten zusammenfallen). Überlege dir dann die Anzahl der Diagonalen in einem n-Eck.
Didaktische Prinzipien Förderung des geometrischen Vorstellungsvermögens
Arbeitsblatt: Eulersches Theorem • 1750 beobachtete Leonhard Euler eine simple Tatsache, die vielen Mathematikern über tausende Jahre lang unbekannt geblieben war. Es gibt einen Zusammenhang zwischen der Anzahl von Flächen, Ecken und Kanten von konvexen Polyedern. Wenn du zwei dieser drei Angaben kennst, ganz egal welche, kannst du dir mit einer Formel die dritte berechnen. • Sammle Daten zu den konvexen Polyedern, die du mit Zometool nachbauen kannst. • Finde eine mathematische Formel für F, E und K:
Didaktische Prinzipien „Isolation der Schwierigkeit“
Durchführung • Offene Lerneinheiten in den 1.Klassen • Kleinere Projekte in den Höheren Klassen – Bsp. Monochord
Das Monochord • Kastenlänge 130cm, Breite und Höhe ca. 30cm • Alle Seiten auf gleicher Tonhöhe • Keine fixen Stege • Die Tonleiter ist „berechenbar“
Das Monochord Eine Schülerin bei der Arbeit
Das Monochord • Verhältnisse (1.Klasse) • Quint 2:3 • Quart 3:4 • Oktav 1:2 • Addition von Schwingungen (2.Klasse) • Aufstellen von Funktionen – Zusammenhang zwischen Frequenz und Seitenlänge (2.Klasse) • Gleichstufige Stimmung – Eine Oktav wird in 12 gleichen Halbtonschritten eingeteilt, mit einem konstanten Verkürzungsverhältnis (3.Klasse)
Das Monochord Oktaven entstehen durch Halbierung der Saiten
Abschluss • Evaluation des Monochord-Projektes anhand von Schülerinterviews • Positiv • Motivation der Schüler und Schülerinnen • Arbeiten in der Gruppe • Überprüfen der Rechnungen am Monochord • Zeit haben fürs Ausprobieren • Schüler konnten sich die Note ausbessern • Negativ • Anforderung unterschätzt • Aufwand für den Lehrer/ die Lehrerin steigt
Ausblick Brücke von Leonardo da Vinci Was ist ihre größtmögliche Spannweite?