190 likes | 545 Views
. T . T . . T. V. V. V. P. S. L. L. L. O. Q. R. E. A. D. N. M. B. C. DIMENSI TIGA. Irisan pada Bangun Ruang. Dimensi tiga: IRISAN. KELAS III SMU CAWU 1. Oleh: Al. Krismanto, M.Sc. Widyaiswara PPPG Matematika Yogyakarta. PENGERTIAN DASAR.
E N D
T T T V V V P S L L L O Q R E A D N M B C DIMENSI TIGA Irisan pada Bangun Ruang
Dimensi tiga:IRISAN KELAS III SMU CAWU 1 Oleh: Al. Krismanto, M.Sc. Widyaiswara PPPG Matematika Yogyakarta
PENGERTIAN DASAR Irisan antara sebuah bidang datar dengan sebuah bangun ruang ialah bangun datar yang semua sisinya adalah ruas garis persekutuan antara bidang dan bidang sisi bangun ruang tersebut Jika bangun ruangnya adalah bidang banyak maka irisannya adalah sebuah segi banyak (poligon: segi-n, n A dan n 3)
DASAR UTAMA MELUKIS IRISAN: KECUALI PERSEKUTUAN ANTARA TIGA BIDANG YANG SALING BERPOTONGAN TIGA BIDANG BERSEKUTU PADA SEBUAH GARIS
(, ) (, ) (, ) (,) (, ) (, ) (, ) (, ) JIKA BIDANGNYA , , DAN HUBUNGAN-HUBUNGAN YANG DIMAKSUD ADALAH: • Jika // maka (, )//(, ) tidak sejajar tidak sejajar ,
JIKA BIDANGNYA , , DAN HUBUNGAN-HUBUNGAN YANG DIMAKSUD ADALAH: 2. Jika (, ) // (, ), maka (, ) // (, ) // (, ) (,) (, ) (, )
JIKA BIDANGNYA , , DAN HUBUNGAN-HUBUNGAN YANG DIMAKSUD ADALAH: 3. Jika (, ) dan (, ) melalui titik T maka (, ) juga melalui titik T (, ) (, ) T T T (, )
Q R P Contoh Diketahui: Kubus ABCD.EFGH H G E Titik P pada AE, F Q pada DH. R pada CG D C Lukislah irisan bidang PQR terhadap kubus A B
H G E F Q R R R R R R S S D P C A B 1. MENGGUNAKAN SIFAT DASAR ADHE // BCGF dipotong bidang PQR (BCGF,PQR)//(ADHE,PQR) karena (ADHE, PQR) = PQ maka (BCGF, PQR) // PQ R R R R pada BCGF dan PQR Jadi (BCGF, PQR) melalui R sejajar PQ Garis tersebut memotong BF di S Irisannya adalah segi-4 PQRS
H G E F Q Q R R M o o o o D P P C N A B 2. MENGGUNAKAN BIDANG DIAGONAL P pada AE, R pada CG Tarik PR Lukis bidang ACGE H G Lukis bidang BDHF E (ACGE, BDHF) = MN F (PR, MN) = titik O Garis potong ketiga, (PQR, BDHF) melalui O D C Tarik QO, memotong BF di S s s A B Irisan bidang PQR terhadap kubus adalah segi-4 PQRS
Q R K K K S L BC memotong sumbu afinitas di titik L M S S P 3. MENGGUNAKAN SUMBU AFINITAS PERHATIKAN GARIS-GARIS POTONG: H (PQR, ACGE) = PR (ADHE, ABCD) = AD (ADHE, ABCD) = AD (AD, QP) = K (AD, QP) = K G (PR, CA) = M (ABCD, ACGE) = CA (ADHE, PQR) = QP (ADHE, PQR) = QP E F D C A B sumbu afinitas sumbu afinitas sumbu afinitas sumbu afinitas Irisannya adalah segi-4 PQRS
TIGA TEKNIK LUKISAN IRISAN 1. MENGGUNAKAN SUMBU AFINITAS 2. MENGGUNAKAN BIDANG DIAGONAL 3. MENGGUNAKAN PERLUASAN BIDANG (SISI) (CONTOH PADA LIMAS)
T P Q R E A D B C MENGGUNAKAN SUMBU AFINITAS Diketahui: limas T.ABCDE P pada TA, Q pada TB, dan R pada TC Lukislah: Irisan bidang PQR terhadap limas Jawab: Bidang PQR = bidang (TAB, alas) = AB (TAB, ) = PQ maka (AB, PQ) = K (TAC, alas) = AC (TAC, ) = PR L L L sumbu afinitas maka (AC, PR) = L K K K Jadi KL adalah sumbu afinitas
T (TCD, alas) = DC perpanjang DC (alas, ) = sumbu afinitas KL V (DC, KL) = M P S S S maka (TAC, ) = MR MR memotong TD di S Q R E (TEC, alas) = EC A D perpanjang EC, B memotong sumbu afinitas di N C L sumbu afinitas sumbu afinitas (TEC, ) = NR N N N K M M M NR memotong TE di V Tarik PV dan VS Jadi irisannya adalah segi-5 PQRSV
MENGGUNAKAN BIDANG DIAGONAL Misal bidang pengiris = bidang PQR = bidang ) T Lukis bidang TAC (memuat PR yang juga terletak pada bidang ) Lukis bidang TBD (memuat Q pada bidang ) P S S S (AC, BD) = M, maka: (TAC, TBD) = TM O O O Q R E A (TM, PR) titik O D M M M (TBD, ) = QO, memotong TD di S B C
Bidang TEC memotong bidang TBD pada TN T (TN, QS) = L (TEC, ) = RL, memotong TE di V V V V P S L L L O Q R E A D N M B C Irisan = segi-5 PQRSV
MENGGUNAKAN PERLUASAN BIDANG MENGGUNAKAN PERLUASAN BIDANG (TBC, TAE) = TK Perluas bidang-bidang TBC, TAE, dan TED (TBC, TDE) = TL T QR pada TBC memo-tong TK di M dan TL di N V V V P S S S M M M Q R E N N N N A D B L C K Tarik MP, memotong TE di V Irisan = segi-5 PQRSV Tarik VN, memotong TD di S