270 likes | 670 Views
คณิตศาสตร์. (ค32101). ชั้นมัธยมศึกษาปีที่ 2. หน่วยการเรียนรู้ที่ 7 ความรู้เบื้องต้นเกี่ยวกับจำนวนจริง. เรื่อง การเขียนทศนิยมให้อยู่ในรูปเศษส่วน. สอนโดย ครูชนิดา ดวงแข. 3. =. 0.30. 10. 178. 0.1780. =. 1,000. การเขียนทศนิยมซ้ำในรูปเศษส่วน. กรณีที่ 1 ซ้ำด้วย 0. เขียนเป็น 0.3.
E N D
คณิตศาสตร์ (ค32101) ชั้นมัธยมศึกษาปีที่ 2 หน่วยการเรียนรู้ที่ 7 ความรู้เบื้องต้นเกี่ยวกับจำนวนจริง เรื่อง การเขียนทศนิยมให้อยู่ในรูปเศษส่วน สอนโดย ครูชนิดา ดวงแข
3 . = 0.30 10 178 . 0.1780 = 1,000 การเขียนทศนิยมซ้ำในรูปเศษส่วน กรณีที่ 1 ซ้ำด้วย 0 เขียนเป็น 0.3 เขียนเป็น 0.178
35 235 = + = 2 100 100 . 2.350 346 1,346 = 1 + = 1,000 1,000 . 1.3460 เขียนเป็น 2.35 เขียนเป็น 1.346
การเขียนทศนิยมเป็นเศษส่วนการเขียนทศนิยมเป็นเศษส่วน กรณีซ้ำด้วย 0 โดยการเอาจุดทศนิยมออกแล้วเขียน จำนวนนั้นเป็นตัวเศษ ตัวส่วนจะเท่ากับ 10, 100, 1,000… ที่มีจำนวนเลขศูนย์ เท่ากับจำนวนตำแหน่งของทศนิยม
. ให้ N = 0.7 . ดังนั้น N = 0.777… (1) 0.7 กรณีที่ 2 ถ้าตัวเลขที่ซ้ำไม่ใช่ 0 ตัวอย่างที่ 1 คูณทั้งสองข้างของสมการ (1) ด้วย10 จะได้ 10 N = 10 × 0.777 ...
หรือ 10N = 7.777 (2) 7 9 7 . นั่นคือ = . 0 7 ตอบ 7 9 ดังนั้น N = 9 สมการ (2) ลบด้วยสมการ (1) จะได้ 10N- N = (7.777…) - (0.777…) 9 N = 7
. วิธีทำ ให้ N = 0.62 ดังนั้น N = 0.6222… (1) จะได้ 10 N = 6.222… (2) จะได้ 100 N = 62.222… (3) . . ตัวอย่างที่ 2 จงเขียน 0.62 ให้อยู่ในรูป เศษส่วน คูณสมการ (1) ด้วย 10 คูณสมการ (1) ด้วย 100
56 N = 28 = 45 90 28 . นั่นคือ 0.62 = 45 สมการ (3) ลบด้วยสมการ (2) จะได้ 100 N - 10 N = (62.222…) - (6.222...) 90 N = 56
ดังนั้น N = 0.7252525… (1) . . ให้ N = 0.725 จะได้ 1,000 N = 725.252525… (2) จะได้ 10 N = 7.252525… (3) . . ตัวอย่างที่ 3 จงเขียน 0.725 ให้อยู่ในรูป เศษส่วน วิธีทำ คูณสมการ (1) ด้วย 1,000 คูณสมการ (1) ด้วย 10
. . นั่นคือ 0.725 N = = หรือ 718 718 359 990 990 495 สมการ (2) ลบด้วยสมการ (3) จะได้ 1,000 N - 10 N = (725.252525…) - (7.252525...) 990 N = 718.000...
ดังนั้น N = 2.85513513… (1) . . ให้ N = 2.85513 จะได้ 100 N = 285.513513… (2) . . ตัวอย่างที่ 4 จงเขียน 2.85513 ให้อยู่ใน รูปเศษส่วน วิธีทำ คูณสมการ (1) ด้วย 100 คูณสมการ (1) ด้วย 100,000 จะได้100,000 N = 285513.513513… (3)
. . นั่นคือ 2.85513 N = 285228 99900 หรือ 2641 285228 = 925 99900 สมการ (3) ลบด้วยสมการ (2) จะได้ 100,000 N - 100 N = 285513 - 285 99900 N = 285228..
6 . 0.6 = 9 ข้อสังเกต 1 ถ้ามีตัวเลขซ้ำ 1 ตัว เมื่อเขียนเป็น เศษส่วนจะมีตัวส่วนเป็น 9 และ ตัวเศษตัวเลขที่เป็นตัวซ้ำ เช่น
13 . . 0.13 = 99 ข้อสังเกต 2 ถ้ามีตัวเลขซ้ำ 2 ตัว เมื่อเขียนเป็น เศษส่วนจะมีตัวส่วนเป็น 99 และ ตัวเศษตัวเลขที่เป็นตัวซ้ำ เช่น
ข้อสังเกต 3 ถ้าทศนิยมดังกล่าวมีบางส่วนซ้ำ และมีบางส่วนไม่ซ้ำ เมื่อเขียนใน รูปเศษส่วน
ตัวเศษ หาได้จากผลต่างของจำนวนที่ อยู่หลังทศนิยม ลบจำนวนที่ไม่ซ้ำ ตัวส่วน ประกอบด้วย 9 และ 0 จำนวน 9 เท่ากับจำนวนเลขโดดที่ซ้ำ จำนวน 0 เท่ากับจำนวนเลขโดดที่ไม่ซ้ำ
- 234 2 = . . 990 0.234 232 = 990 116 495 = ตัวอย่างเช่น
. - 47 4 1.47 = 1+ 90 = 43 43 1+ = 1 90 90
. . 1) 0.37 37 35 35 = . . = 2+ = 2 99 2) 2.35 99 99 จงทำทศนิยมซ้ำให้อยู่ในรูปเศษส่วน
. . 3) 0.537 - 537 5 = 990 . . 4) 0.5614 5609 5614 - 5 532 = = = 9990 9990 990 . . 3182 5) 0.3214 = 3214 - 32 9900 = 9900
การบ้าน แบบฝึกหัดที่ 2.1 หน้าที่ 42 ข้อที่ 2 (1 - 4)