1 / 9

Analisis Sensitivitas

Analisis Sensitivitas. Analisis Sensitivitas. Bagaimana pengaruh perubahan data terhadap solusi optimum Memberikan jawaban atas pertanyaan : Sampai seberapa jauh perubahan dibenarkan tanpa mengubah solusi optimum atau tanpa menghitung solusi optimum dari awal. Analisis Sensitivitas.

claus
Download Presentation

Analisis Sensitivitas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AnalisisSensitivitas

  2. AnalisisSensitivitas • Bagaimanapengaruhperubahan data terhadapsolusi optimum • Memberikanjawabanataspertanyaan : • Sampaiseberapajauhperubahandibenarkantanpamengubahsolusi optimum atautanpamenghitungsolusi optimum dariawal

  3. AnalisisSensitivitas • Kendalamana yang dapatdilonggarkan (dinaikkan) danseberapabesarkelonggarandapatdiberikansehinggamenaikkannilai z tetapitanpamelakukanpenghitungandariawal. Kendalamana yang dapatditurunkantanpamelakukanperhitungandariawal • Kendalamana yang dapatprioritasuntukdinaikkan • Seberapabesarkoefisienfungsitujuandapatdibenarkanuntukberubahtanpamengubahsolusi optimal

  4. ContohSoal: • Perusahaan shaderakanmemprediksibarangandalaannyayaituIpoddan Jam-TV. SetiapIpodmembutuhkan 4 jam pengerjaanelektronikdan 2 jam perakitan. Jam-TV membutuhkan 3 jam pengerjaanelektronikdan 1 jam perakitan. Tersediawaktu 240 jam PE dam 100 jam perakitan. SetiapIpodlaba $7 dan Jam-TV $5 • Hitungkombinasi optimum

  5. Maksimumkan 7X1 + 5X2 FungsiKendala 4X1 + 3X2 ≤ 240 2X1 + X2 ≤ 100 X1 ≥ 0 X2≥ 0

  6. X2 3X1+X2=240 Solusi Optimum tercapaipadatitik C perpotongangaris [1] 3X1+X2= 100 [2]4X1+2X2 = 240 Dimana X1 = 30 dan X2 = 40 NilaiKeuntungan = $410 4X1+2X2=100 100 80 A C 40 B X1 0 50 60

  7. X2 2X1+X2=110 Nilai Optimum padatitik C perpotongangaris [1] 2X1+X2= 110 [2]4X1+3X2 = 240 Dimana X1 = 15 dan X2 = 20 NilaiKeuntungan = $415 110 4X1+3X2=240 80 A C 40 Hambatan Jam PE tidakberubah B X1 0 60

  8. X2 Perubahan Jam Perakitandari 2X1+x2=100 menjadi 2X1+x2 = 90 2X1+X2=90 Nilai Optimum tercapaipadatitik C perpotongangaris [1] 2X1+X2= 90 [2]4X1+3X2 = 240 Dimana X1 = 15 dan X2 = 60 NilaiKeuntungan = $405 4X1+3X2=240 100 90 80 C 40 B X1 0 50 60

More Related