1 / 17

Distribusi Sampling

Distribusi Sampling. Materi Kuliah Metstat #3 Sekolah Tinggi Ilmu Statistik. Usman Bustaman, S.Si, MSE, M.Sc. Makna Probabilita. klasik (eksak): P(event E) = N e /N cth: melempar 2 koin 1 kali frekuensi relatif: P(event E)  n e /n cth: melempar 2 koin banyak kali

clodia
Download Presentation

Distribusi Sampling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Distribusi Sampling Materi Kuliah Metstat #3 Sekolah Tinggi Ilmu Statistik Usman Bustaman, S.Si, MSE, M.Sc.

  2. Makna Probabilita • klasik (eksak): P(event E) = Ne/N cth:melempar 2 koin 1 kali • frekuensi relatif: P(event E)  ne/n cth:melempar 2 koin banyak kali • Subjektif: P(event E)  (suka)2 cth: tidak melempar 2 koin  !!

  3. eksak • P (tepat 0 H) = ¼ • P (tepat 1 H) = 2/4 • P (tepat 2 H) = ¼

  4. relatif

  5. Pengambilan Sampel Acak(Random Sampling) • Syarat: Masing-2 elemen dlm populasi memiliki probabilita yg sama utk terpilih If Xi ~ f(x)  f(x1,x2,…,xn)=f(x1)f(x2)…f(xn) i i d r v

  6. Pengambilan Sampel Acak(Random Sampling) • Cara (Sampling Technique): • membuat sampling frame • menarik sampel secara random • Contoh: Ott & Longnecker (2010) p. 195: Survey (polling) yang dilakukan oleh Literary Digest vs Goerge Gallup  pemenang pilpres AS (Landon vs Roosevelt) th 1936

  7. Contoh • Pemilihan 2 kota dari 10 kota All Possible Sample Bgm dgn populasi yg besar?? • Buat Sampling frame • Tarik angka random sebanyak n

  8. Distribusi Sampling • 7an pengambilan sampel  memperoleh/menduga karakteristik populasi statistik  parameter • Distribusi sampling  distribusi probabilita dari (sebuah) statistik. • Example 4.22 (Ott & Longnecker p. 182) Montgomery, p.197 Walpole, p.231

  9. Distribusi sampling dari rata-2 sampel • Example 4.22 (Ott & Longnecker p. 182) • Teorema Limit Pusat Tugas: Buktikan

  10. ContohAplikasi Montgomery, p. 241, exercise 7.14 • Misal X memilikidistribusipeluang uniform: • Jikadiambilsebanyak 40 sampeldari X, tentukandistribusi sampling untuk rata-ratanya. Hint: tent. E(X) danVar(X), lalugunakan CLT

  11. Distribusi sampling dari varians sampel Bagi dengan dan substitusi i = 1 Dist. Chi-square dgn df = n Dist. Chi-square dgn df = 1

  12. Normal  chi-square • Tabel Chi-square

  13. Distribusi sampling dari proporsi sampel • P = X/n  binomial(n,p)

  14. Contoh Montgomeri example 4.17, 4.18, p. 119-120 • Dengan pendekatan dist. normal

  15. Queez • Apa yang dimaksud dengan Distribusi Probabilita? • Apa yang dimaksud dengan Distribusi Sampling? • Apakah Distribusi Probabilita = Distribusi Sampling: • Secara makna? (Ya/tidak), jelaskan! • Secara realita/interpretasi? (Ya/tidak), jelaskan! • Jelaskan pengertian dari teorema limit pusat (central limit theorem)

More Related