270 likes | 385 Views
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2010. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc. Gummel-Poon Static npn Circuit Model. Intrinsic Transistor. C. R C. I BR. B. R BB. I LC. I CC - I EC = {IS/Q B }* { exp(v BE /NFV t )-exp(v BC /NRV t )}.
E N D
EE 5340Semiconductor Device TheoryLecture 23 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc
Gummel-Poon Staticnpn Circuit Model Intrinsic Transistor C RC IBR B RBB ILC ICC -IEC = {IS/QB}* {exp(vBE/NFVt)-exp(vBC/NRVt)} IBF B’ ILE RE E
IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR ) {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2} Gummel Poon npnModel Equations
Charge componentsin the BJT **From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc.
Gummel PoonBase Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) [1+144iB/(p2IRB)]1/2-1 z = (24/p2)(iB/IRB)1/2 From An Accurate Mathematical Model for the Intrinsic Base Resistance of Bipolar Transistors, by Ciubotaru and Carter, Sol.-St.Electr. 41, pp. 655-658, 1997. RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB
iC RC vBC - iB + + RB vBE - vBEx RE BJT CharacterizationForward Gummel vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexpf(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexpf(vBE/NFVt)/QB
iC and iB (A) vs. vBE (V) N = 1 1/slope = 59.5 mV/dec N = 2 1/slope = 119 mV/dec Ideal F-G Data
RC vBCx vBC - iB + + RB vBE - RE iE BJT CharacterizationReverse Gummel vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = ISexpf(vBC/NRVt)/BR + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt)/QB
iE and iB (A) vs. vBE (V) N = 1 1/slope = 59.5 mV/dec N = 2 1/slope = 119 mV/dec Ideal R-G Data Ie
Ideal 2-terminalMOS capacitor/diode conducting gate, area = LW Vgate -xox SiO2 0 y 0 L silicon substrate tsub Vsub x
Band models (approx. scale) metal silicon dioxide p-type s/c Eo Eo qcox ~ 0.95 eV Eo qcSi= 4.05eV qfm= 4.1 eV for Al Ec qfs,p Eg,ox ~ 8 eV Ec EFm EFi EFp Ev Ev
Flat band condition (approx. scale) Al SiO2 p-Si q(fm-cox)= 3.15 eV q(cox-cSi)=3.1eV Ec,Ox qffp= 3.95eV EFm Ec Eg,ox~8eV EFi EFp Ev Ev
Equivalent circuitfor Flat-Band • Surface effect analogous to the extr Debye length = LD,extr = [eVt/(qNa)]1/2 • Debye cap, C’D,extr = eSi/LD,extr • Oxide cap, C’Ox = eOx/xOx • Net C is the series comb C’Ox C’D,extr
Accumulation forVgate< VFB Vgate< VFB -xox SiO2 EOx,x<0 0 holes p-type Si tsub Vsub = 0 x
Accumulationp-Si, Vgs < VFB Fig 10.4a*
Equivalent circuitfor accumulation • Accum depth analogous to the accum Debye length = LD,acc = [eVt/(qps)]1/2 • Accum cap, C’acc = eSi/LD,acc • Oxide cap, C’Ox = eOx/xOx • Net C is the series comb C’Ox C’acc
Depletion for p-Si, Vgate> VFB Vgate> VFB -xox SiO2 EOx,x> 0 0 Depl Reg Acceptors p-type Si tsub Vsub = 0 x
Depletion forp-Si, Vgate> VFB Fig 10.4b*
Equivalent circuitfor depletion • Depl depth given by the usual formula = xdepl = [2eSi(Vbb)/(qNa)]1/2 • Depl cap, C’depl = eSi/xdepl • Oxide cap, C’Ox = eOx/xOx • Net C is the series comb C’Ox C’depl
Inversion for p-SiVgate>VTh>VFB Vgate> VFB EOx,x> 0 e- e- e- e- e- Acceptors Depl Reg Vsub = 0
Inversion for p-SiVgate>VTh>VFB Fig 10.5*
Approximation concept“Onset of Strong Inv” • OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG= VTh • Assume ns = 0 for VG< VTh • Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh • Cd,min = eSi/xd,max for VG > VTh • Assume ns > 0 for VG > VTh
MOS Bands at OSIp-substr = n-channel Fig 10.9*
Equivalent circuitabove OSI • Depl depth given by the maximum depl = xd,max = [2eSi|2fp|/(qNa)]1/2 • Depl cap, C’d,min = eSi/xd,max • Oxide cap, C’Ox = eOx/xOx • Net C is the series comb C’Ox C’d,min
References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986