1 / 22

Folha de Cálculo

Folha de Cálculo. Pedro Barahona DI/FCT/UNL Introdução aos Computadores e à Programação 2º Semestre 2005/2006. Folha de Cálculo. A informação numa folha de cálculo está estruturada com base em matrizes, ou tabelas.

Download Presentation

Folha de Cálculo

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Folha de Cálculo Pedro Barahona DI/FCT/UNL Introdução aos Computadores e à Programação 2º Semestre 2005/2006 Folha de Cálculo

  2. Folha de Cálculo • A informação numa folha de cálculo está estruturada com base em matrizes, ou tabelas. • Numa folha simples, existe uma única matriz, cuja dimensão é arbitrária. Nessa matriz podem ser definidas submatrizes, ou subvectores. • Qualquer posição na matriz é uma variável, identificada pela sua coluna (A, B, Z, AA, ... – uma ou mais letras) e sua linha (1, 2, 3, ... - um inteiro). Por exemplo B2 = “Pedro Vieira” Folha de Cálculo

  3. Folha de Cálculo • Tal como numa linguagem de programação, a uma variável podem ser atribuidos valores, constantes ou dependentes de outras variáveis através de fórmulas. B1 = 3 * A1 B2 = 3 * A2 .... B5 = 3 * A5 A1 = 1 A2 = 2 .... A5 = 5 • Uma folha de cálculo tem uma natureza reactiva. Sempre que uma variável muda de valor, as que são dependentes mudam igualmente de valor. • Por exemplo, se A1 passar para 2, B2 passará automáticamente para B1 = 2* A1 = 2* 2 = 4. Folha de Cálculo

  4. Folha de Cálculo • Por esta razão, não são permitidas fórmulas que introduzam dependências circulares • directas ( A1 = 2 * A1); • ou indirectas (A1 = 3 * B1 e B1 = 4 * A1). • Qualquer destas fórmulas levaria a computações eventualmente infinitas. A1 = 2 * 2 * 2 * 2 * 2 * ... A1 = 3 * 4 * 3 * 4 * 3 * ... • Nota: As folhas de cálculo permitem controlar o número de computações mas, em geral, as referências circulares devem ser evitadas. Folha de Cálculo

  5. Condicionais em Folhas de Cálculo • Em folhas de cálculo há instruções condicionais de atribuição de valores (não condicionais de controle de execução) • A sua sintaxe (em EXCEL) é if(condition, then_value, else_value) A1 = 1 A2 = 2 .... A5 = 5 B1 = if (A1 <=3, 3* A1,0) B2 = if (A2 <=3, 3* A2,0) .... B5 = if (A5 <=3, 3* A5,0) • Estas instruções podem encadear-se. Por exemplo if(condition1, then_value1, if(condition2, then_value2, if(condition3, then_value3,value_4))) Folha de Cálculo

  6. Iterações em Folhas de Cálculo • O conceito de iteração numa linguagem imperativa implica a repetição temporal de instruções. Por exemplo, com a instrução para i de 1 até n fazer <instruções> fimfazer; pretende-se fazer executar as <instruções> (de atribuição de valores a variáveis) n vezes, em sequência. • Numa folha de cálculo, essa iterações podem ser obtidas através de uma repetição espacial das instruções. • A título de exemplo, vamos calcular xn. Folha de Cálculo

  7. Iterações em Folhas de Cálculo y = 1 ;x = <valor> for i = 1:n y = y * x fimfazer; • Numa linguagem imperativa, por exemplo em Octave, o cálculo pode ser feito através do programa • Neste programa, a variável y vai tomando os diversos valores (1, x, x2, x3, ..., xn), ao longo do tempo, começando com o valor 1, e terminando no valor xn. • Numa folha de cálculo, os diferentes valores que y toma, podem ser arrumados, ao longo do espaço, por exemplo num conjunto de células contíguas (por exemplo, uma coluna). Folha de Cálculo

  8. Iterações em Folhas de Cálculo • Numa linguagem imperativa, por exemplo em Octave, o cálculo pode ser feito através do programa X= <...> Y1 = 1 * X Y2 = Y1 * X; Y3 = Y2 * X; … Y5 = Y4 * X; A1 = <...> A2 = A1* A1; A3 = A2* A1; … A5 = A4 * A1; y = 1 ;x = <...> for i = 1:n y = y * x fimfazer; • De notar que, na realidade, o mesmo programa tem de ser “escrito” n vezes, uma vez em cada célula. Para evitar este inconveniente, a interface das folhas de cálculo permite “copiar” o conteúdo de uma célula para outras, fazendo automáticamante o ajuste das referências. Folha de Cálculo

  9. Iterações em Folhas de Cálculo • Por exemplo, se tivermos a célula B1 definida como B1 = 2* A1 e a copiarmos “para baixo”, i.e. para B2, como a cópia é feita para uma célula com nº de linha superior em 1, (B1 para B2), o valor 1 é acrescentado a todas as linhas na fórmula, obtendo-se B2 = 2*A2 • Igualmente ao copiar “para o lado” uma célula, a diferença de colunas entre a célula origem e a célula destino é acrescentada às referências a colunas. Se copiar a célula B1 para a posição D1 (2 colunas de diferença) obtem-se D1 = 2*C1 • Nota: A cópia pode ser feita com os habituais comandos <ctrl-c> e <ctrl-v>, ou por comandos de “arrastamento”. Folha de Cálculo

  10. Referências em Folhas de Cálculo • As referências a linhas e colunas que são ajustadas nas cópias de células são chamadas referências relativas (à célula de onde são copiadas – a célula varia n colunas/linhas em relação às célula “de cima” ou “do lado”). • No entanto, há situações em que não queremos que estas referências a linhas e colunas sejam relativas mas sim absolutas, e que não sejam alteradas na cópia. Por exemplo, ao copiar o conteúdo da célula A2 para A3, queremos alterar a 1ª referência a A1 para A2 (referência relativa), mas não a 2ª referência (referência absoluta). A1 = <...> A2 = A1* A1; A3 = A2* A1; … A5 = A4 * A1; Folha de Cálculo

  11. A1 = <...> A2 = A1* A$1; A3 = A2* A$1; … A5 = A4 * A$1; A cópia da célula A2 para as células abaixo altera a referência à linha relativa (1 acima), mas não à referência absoluta (a célula A1). Referências em Folhas de Cálculo • Para explicitarmos que uma referência é absoluta, e não se altera quando copiada para uma linha/coluna diferentes, antecedemos a linha/coluna pelo símbolo ‘$’. • As referências podem ser relativas a uma dimensão e absolutas na outra dimensão, como no exemplo presente (a linha é absoluta, mas a coluna não é). • Assim, se copiarmos as células A2 a A5 para as células B2 a B5, iremos calcular B1^5. Folha de Cálculo

  12. Referências em Folhas de Cálculo • As referências relativas/absolutas podem ser igualmente utilizadas em matrizes. A1 = 2 A2 = A1* A$1; A3 = A2* A$1; … A5 = A4 * A$1; B1 = 3 B2 = B1* B$1; B3 = B2* B$1; … B5 = B4 * B$1; • A iteração (temporal) pode pois ser substituída pela iteração (espacial) mas depende do utilizador o número de células que copia, isto é, o número de iterações a efectuar. • Os ciclos enquanto não são assim directamente representáveis numa folha de cálculo, se o utilizador não souber à partida o número de iterações que devem ser efectuadas. Folha de Cálculo

  13. Referências em Folhas de Cálculo • Podem ainda ser utilizadas referências “mistas” , que são particularmente úteis no caso de se pretenderem preencher tabelas relativas a uma linha e uma coluna. • Por exemplo, a tabela de multiplicação acima pode ser obtida por • Obter a célula B2 através da multiplicação A2 * B1 • Tornar absolutas as referências à linha 1 em B1 e à coluna A, em A2, ficando $A2 * B$1 • Copiar esta célula para todas as células na matriz B2:E5. Folha de Cálculo

  14. Soma de um Vector • Os valores de um vector ou tabela numa folha de cálculo podem ser agregados (somas, médias, etc..) de uma forma semelhante ao que se faz numa linguagem de programação como o Octave, com a implementação de iteração. • Consideremos a soma de o vector nas posições A1 a E1. Em Octave poderíamos escrever (para um vector de 5 posições). s = 0; for i = 1:5 s = s+a(i); endfor. • A variável s cujo valor vai sendo iterado, pode ser substituída pelo vector B1 a B5 que vai tomando os valores de s nas diferentes iterações A2 = A1 + 0; B2 = B1 + A2; C2 = C1 + B2; D2 = D1 + C2; E2 = E1 + D2; Folha de Cálculo

  15. Soma Condicional de um Vector • Em Octave podemos somar valores de um vector que satisfaçam ums condição através de uma instrução condicional dentro do ciclo. • Consideremos a soma apenas dos valores positivos de um vector nas posições A1 a E1. Em Octave poderíamos escrever (para um vector de 5 posições). s = 0; for i = 1:5 if a(i) > 0 then d = a(i) else d = 0; s = s+d; endfor. • Este estilo de programação pode ser adaptado a um folha de cálculo, utilizando-se uma linha adicional, onde se colocam ou os valores do vector original ou o valor 0. Folha de Cálculo

  16. A2 = if(A1 > 0, A1, 0); B2 = if(B1 > 0, B1, 0); C2 = if(C1 > 0, C1, 0); D2 = if(E1 > 0, D1, 0); E2 = if(E1 > 0, E1, 0); A3 = A2 + 0; B3 = B2 + A3; C3 = C2 + B3; D3 = D2 + C3; E3 = E2 + D3; Soma Condicional de um Vector s = 0; for i = 1:5 if a(i) > 0 then d = a(i) else d = 0; s = s+d; endfor. Folha de Cálculo

  17. Funções para Somas de Vectores • Tal como em Octave, também as folhas de cálculo permitem a utilização de funções. O paralelo é ainda maior do que noutras linguagens de programação, porque em Octave vectores e matrizes são tipos básicos, permitindo referências a subvectores e submatrizes. • Assim em Octave, a soma dos elementos de um vector V com n elementos é obtida através da função s = sum(V) • Ainda em Octave, se se pretender somar apenas os valores do subvector constituído pelos elementos 3 a 7, podemos usar a referência a esse subvector na função através de s = sum(V(3:7)) Folha de Cálculo

  18. Funções para Somas de Vectores • Numa folha de cálculo, podemos usar igualmente a função sum, sendo o vector delimitado entre a sua célula inicial e final. • Quer no caso de um vector linha F1 = SUM(A1:E1) • Quer no caso de um vector coluna A6 = SUM(A1:A5) • Estas funções podem ainda utilizar-se para somas condicionais: • G1 = SUMIF(A1:E1,">0") • A7 = SUMIF(A1:A5,">0") Folha de Cálculo

  19. Operações de Vectores “Ponto a Ponto” • Tal como em Octave, operações sobre elementos de um vector/matriz, podem ser condicionadas através da utilização de vectores/matrizes booleanas, que filtram os elementos a utilizar. • Por exemplo,em Octave, a soma de todos os elementos positivos de um vector A pode ser efectuada através da instrução B = sum(A.*(A>0)) que pode ser decompostas nas seguintes operações: • Criação de um vector booleano, A > 0, com 1s nas posições correspondentes a elementos positivos do vector A • Obtenção do vector A.*(A>0), igual a A nas posições em que A é positivo e com 0s nas outras posições. • Soma dos elementos deste vector, que corresponde à soma dos elementos positivos do vector A (os outros foram “filtrados” pela multiplicação por 0). Folha de Cálculo

  20. Operações de Vectores “Ponto a Ponto” • As mesmas operações “ponto a ponto” podem ser efectuadas na folha de cálculo, como ilustrado acima. • Sendo o vector A constituído pelas células A1:E1, na linha 2 é criado o vector A>0, indicando para cada célula Bi a operação Bi = Ai > 0 • Na linha 3 são multiplicados os dois vectores, ponto a ponto. • A soma dos elementos positivos do vector A é assim obtida na célula E3 através da função sum(A3:E3). • De notar, que o mesmo conjunto de operações podia ser efectuado através de uma única função entre vectores {=sum(A3:E3*(A3:E3>0))} Nota: As {} são inseridas através de CTRL-SHIFT-ENTER em vez do simples ENTER. Folha de Cálculo

  21. Soma de uma Matriz E1 = SUM(A1:D1) E2 = SUM(A2:D2) E3 = SUM(A3:D3) • As mesmas técnicas podem ser utilizadas no caso de matrizes, sendo mais “prático” o uso de funções. F1 = SUMIF(A1:D1,”>0”) F2 = SUMIF(A1:D1,”>0”) F3 = SUMIF(A1:D1,”>0”) A4 = SUM(A1:A3) ..... D4 = SUM(D1:D3) E4 = SUM(A1:D4) F4 = SUM(F1:F3) E5 = SUM(E1:E4) F5 = SUMIF(A1:D4,”>0”) A4 = SUMIF(A1:A3,”>0”) ... D4 = SUMIF(D1:D3,”>0”) Folha de Cálculo

  22. Exemplo: Queda Livre g = 9.8 % aceleração da gravidade h = % altura inicial (em metros) k = % coeficiente de atrito (1/s) dt = % intervalo de tempo (em segs) ? t = 0; x = h; v = 0; a = g; while x < h t = t + dt; x = x + v * dt; v = v + a * dt; a = g - k * v; endwhile; Folha de Cálculo

More Related