220 likes | 359 Views
Symulacje komputerowe mikroświata atomów i molekuł. Z. Gburski, Instytut Fizyki UŚl. zgburski@us.edu.pl. Historycznie, poznawanie i rozumienie świata odbywało się poprzez:. eksperymenty teorie Obecnie również, - symulacje komputerowe.
E N D
Symulacje komputerowe mikroświata atomów i molekuł Z. Gburski, Instytut Fizyki UŚl. zgburski@us.edu.pl
Historycznie, poznawanie i rozumienie świata odbywało się poprzez: eksperymenty teorie Obecnie również, - symulacje komputerowe
„Computer in the future may weight not much more than 1.5 tons”, Popular Mechanics (USA), 1949 Znamy pewną ilość fundamentalnych praw przyrody (fizyki). Zwykle sformułowane w języku matematyki, w postaci równań (wzorów). Równania te potrafimy rozwiązać dokładnie (analitycznie) tylko dla niewielkiej liczby prostych układów fizycznych. Np. dla rozciąganej sprężyny stwierdzono, że: siła F potrzebna do odchylenia x sprężyny z jej położenia równowagi jest liniowo proporcjonalna do tego odchylenia tj. Fx , czyli F = - k x gdzie k jest stałą materiałową sprężyny.
Wykorzystując drugie prawo dynamiki Newtona, pęd , wtedy Zaobserwowana doświadczalnie zależność Fx i prawo dynamiki Newtona prowadzą do równania, w innej notacji, lub
Równanie to potrafimy rozwiązać, , gdzie (oscylacje, drgania sprężyny) Gdybyśmy chcieli obliczyć wychylenia atomów w sieci krystalicznej skomplikowany układ wielu równań
Równanie ruchu dla i-tej cząstki, Numeryczne rozwiązywanie (algorytmy) tych równań daje ewolucję w czasie położeń i prędkości cząstek, tzw. symulacja MD (molecular dynamics) układu. N cząstek, każda oddziałuje z (N-1) pozostałymi, razem N(N-1) oddziaływań tj. N(N-1)/2 sił do policzenia w każdym kroku czasowym. W 1 cm sześciennym jest 1019 cząstek.
Jeżeli nie interesuje nas ewolucja czasowa, ale tylko średnie statyczne, np. struktura, średni moment dipolowy, moment magnetyczny, …itp., wówczas - symulacja Monte Carlo. Korzystamy z faktu, iż stan równowagowy (stabilny) układu to stan o najniższej energii potencjalnej Ep. Losujemy (stąd nazwa MC) przesunięcia cząstek, obliczamy energię Ep przed i po przesunięciu, jeżeli po przesunięciu energia mniejsza, to przesunięcie akceptujemy, …itd. W ten sposób „ześlizgujemy” się do równowej konfiguracji cząstek,o najmniejszej energii potencjalnej.
Rozłożenie atomów w komórkach Sieć prosta Sieć przestrzennie centrowana Sieć ściennie centrowana
Mechanika kwantowa Molekuła nie składa się z atomów/kuleczek, lecz charakteryzuje się raczej rozkładem gęstości elektronów wokół „szkieletu” wyznaczonego przez jądra atomów. Gęstość elektronową obliczamy bazując na równaniu Schrödingera (funkcja ), lub pokrewnych, KS (DFT), HF, MP, CP.
Terahercowy nanooscylator 1 THz = 1012 Hz = 1 000 000 000 000 drgań na sekundę