200 likes | 345 Views
Deutsch als Zweitsprache: Experimentelle Methoden WS 2013/2014. Inferenzstatistik Tübingen, 28. November 2013. Experimentieren. Unabhängige Variable(n) (UV) bzw. Faktor(en) bzw. Prädiktor(en) Abhängige Variable (AV) bzw. Kriterium
E N D
Deutsch als Zweitsprache:Experimentelle MethodenWS 2013/2014 Inferenzstatistik Tübingen, 28. November 2013
Experimentieren • Unabhängige Variable(n) (UV) bzw. Faktor(en) bzw. Prädiktor(en) • Abhängige Variable (AV) bzw. Kriterium • Experiment prüft eine Hypothese über die Wirkung von UV auf AV: • UV hat eine Wirkung auf AV (ungerichtete Hypothese) • UV hat eine bestimmte Wirkung auf AV (gerichtet Hypothese) • UV hat eine von verschiedenen bestimmten Wirkungen auf AV Zwischen UV und AV besteht eine gerichtete Beziehung, die kausal interpretiert wird
Experimentieren • Experiment prüft eine Hypothese über die Wirkung von UV auf AV, z.B.: „Ein Text mit einem Personalpronomen im Deutschen ist akzeptabler, wenn sich das Pronomen auf den salientesten Antezedent bezieht (im Fokus), im Vergleich zu einem weniger salienten Antezedenten (z.B. aktiviert)“ • UV? • AV? Salienz des Antezedenten Akzeptabilität des Textes
Experimentieren • UV: Salienz des Antezedenten: was tun? • die (Ausprägung der) UV wird im Experiment manipuliert • Wir brauchen einen Text, der ein Personalpronomen enthält. • Wir brauchen (im minimalen Fall) zwei relevante Antezedenten, von denen einer der salientere und damit (im minimalen Fall) der salienteste ist. • Wir brauchen Kenntnis darüber, wie wir die Salienz der Antezedenten über sprachliche Mittel entsprechend manipulieren können (Anm.: diese Kenntnis muss nicht umfassend sein). • Wir brauchen eine Möglichkeit, die Anbindung des Pronomens so zu manipulieren, dass sich das Pronomen wahlweise auf den salientesten Antezedenten oder den weniger salienten Antezedenten bezieht. • Wir wollen Alternativerklärungen für einen stützenden Befund soweit wie möglich ausschließen, z.B. durch das Manipulieren oder Kontrollieren zusätzlicher relevanter Variablen.
Experimentieren • AV: Akzeptabilität des Textes: was tun? • die (Ausprägung der) AV wird im Experiment beobachtet, genauer: gemessen! • Wie können wir die Akzeptabilität eines Textes beobachten? • Antwort: gar nicht • Lösung: Operationalisierungder Hypothese durch Angabe einer Messvorschrift für die AV
Experimentieren • „Ein Text mit einem Personalpronomen im Deutschen ist akzeptabler, wenn sich das Pronomen auf den salientesten Antezedent bezieht (im Fokus), im Vergleich zu einem weniger salienten Antezedenten (z.B. aktiviert)“ • Operationalisierungder Hypothese: Akzeptabilitätsurteil • „Ein Text mit einem Personalpronomen im Deutschen wird als akzeptabler beurteilt, wenn sich das Pronomen auf den salientesten Antezedent bezieht (im Fokus), im Vergleich zu einem weniger salienten Antezedenten (z.B. aktiviert)“
Experimentieren • „Ein Text mit einem Personalpronomen im Deutschen wird als akzeptabler beurteilt, wenn sich das Pronomen auf den salientesten Antezedent bezieht (im Fokus), im Vergleich zu einem weniger salienten Antezedenten (z.B. aktiviert)“ • Experimentieren: wozu? Intuition der (Armchair-) Linguisten! • „Ein Text mit einem Personalpronomen im Deutschen wird von Muttersprachlern des Deutschen als akzeptabler beurteilt, wenn sich das Pronomen auf den salientesten Antezedent bezieht (im Fokus), im Vergleich zu einem weniger salienten Antezedenten (z.B. aktiviert)“ • Die Hypothese formuliert eine Aussage über eine Population, hier: darüber, wie sich Muttersprachler des Deutschen verhalten
Experimentieren • Die Hypothese formuliert eine Aussage über eine Population • Im Experiment können wir nur eine Stichprobe beobachten, die repräsentativ für die Population sein soll (Zufallsstichprobe) • Können wir von den Beobachtungen in der Stichprobe darauf schließen (= inferieren), was in der Population der Fall ist? • z.B.: wenn der vorhergesagte Mittelwertsunterschied in der Stichprobe beobachtet wird, ist er dann in der Population vorhanden? • Was könnte dagegen sprechen? • Es könnte der Fall sein, dass der Mittelwertsunterschied in der Stichprobe nicht dadurch zustande kam, weil er in der Population existiert (H1), sondern er könnte zufällig entstanden sein (H0)
Experimentieren • Alternativhypothese H1: • „Ein Text mit einem Personalpronomen im Deutschen wird von Muttersprachlern des Deutschen als akzeptabler beurteilt, wenn sich das Pronomen auf den salientesten Antezedent bezieht (im Fokus), im Vergleich zu einem weniger salienten Antezedenten (z.B. aktiviert)“ • Nullhypothese H0: • „Ein Text mit einem Personalpronomen im Deutschen wird von Muttersprachlern des Deutschen NICHT als akzeptabler beurteilt, wenn sich das Pronomen auf den salientesten Antezedent bezieht (im Fokus), im Vergleich zu einem weniger salienten Antezedenten (z.B. aktiviert)“ • Wie kann es passieren, dass der Mittelwertsunterschied in der Stichprobe zufällig entsteht?
Experimentieren • Wie kann es passieren, dass der Mittelwertsunterschied in der Stichprobe zufällig entsteht? • Antwort: beim Messen (Messfehler; Störvarianz)
Experimentieren Messen: vom empirischen Relativ zum numerischen Relativ • Ein empirisches Relativ besteht aus einer Menge von Elementen, denen Merkmalsausprägungen eigen sind, sowie ihren Relationenzueinander. • Über die Relationen zwischen den Merkmalsausprägungen (von UV und AV) macht die Hypothese eine Aussage • Beim Messenwird das empirische Relativ in ein numerisches Relativ abgebildet, auf dem statistische Berechnungen durchgeführt werden können. • Exkurs Skalenniveau: Vom Messen hängt ab, welche Interpretationen des numerischen Relativs zulässig sind: • Nominalskala: x1 = x2, x1 ≠ x2 • Ordinalskala:x1 < x2, x1> x2 • Intervallskala: (x1─ y1= x2 ─ y2),(x1─ y1< x2 ─ y2), (x1─ y2> x2 ─ y2) • (Verhältnisskala): hat einen Nullpunkt → Verhältnisse interpretierbar
Experimentieren • Wie kann es passieren, dass der Mittelwertsunterschied in der Stichprobe zufällig entsteht? • Antwort: beim Messen (Messfehler; Störvarianz) • Der Messwert setzt sich zusammen aus dem wahren Wert plus dem Fehler ε • z.B. Akzeptabilitätsurteil = Akzeptabilität + Fehler ε • Annahme: ε ist normalverteilt
Experimentieren • z.B. Akzeptabilitätsurteil = Akzeptabilität + Fehler ε • Annahme: ε ist normalverteilt • Verteilung der Population der Akzeptabilitätsurteile mit dem Mittelwert μ0 und der Fehlervarianz σ0 • Der Mittelwert μ0 entspricht dem wahren Wert des Akzeptabilitätsurteils der Akzeptabilität μ0
Experimentieren • Der Mittelwert μ0 entspricht der Akzeptabilität • Hypothese für Mittelwertsunterschied für Texte mit Pronomen mit salientenAntezedenten und weniger salienten Antezedenten besagt: es gibt zwei verschiedene Populationen von Akzeptabilitätsurteilen mit den Mittelwerten μ1 und μ2 μ1 μ2
Experimentieren • Seien die Stichprobenmittelwerte undhypothesenkonform • H1: die beiden Stichproben stammen aus verschiedenen Populationen • H0: beide Stichproben stammen aus derselben Population, der Mittelwertsunterschied in den Stichproben ist durch Zufall entstanden Modell H0 Modell H1 μ1 μ0 μ2
Experimentieren • Seien die Stichprobenmittelwerte undhypothesenkonform • Je größer der Mittelwertsunterschied zwischen und je kleiner die Varianzen in den Populationen im Modell H1, desto geringer ist die Wahrscheinlichkeit, dass der Mittelwertsunterschied zufällig zustandekam. • Allgemeiner Zusammenhang: Je größer die Varianz, desto schlechter wird der Populationsmittelwert durch die Stichprobe geschätzt (Standardfehler) • Allgemeiner Zusammenhang: Je größer die Stichprobe, umso besser werden die Populationsparameter geschätzt Modell H0 Modell H1 μ1 μ0 μ2
Experimentieren • (Student-) t-Verteilung: Wahrscheinlichkeitsverteilung der Mittelwerte der Stichproben des Umfangs n aus einer Standardnormalverteilung • Standardnormalverteilung = Normalverteilung mit μ = 0 und σ = 1 • Standardfehler des Mittelwerts (korrigierte gemittelte Stichprobenvarianzen)
Experimentieren • (Student-) t-Verteilung: Wahrscheinlichkeitsverteilung der Mittelwerte der Stichproben des Umfangs n aus einer Standardnormalverteilung • Standardnormalverteilung = Normalverteilung mit μ = 0 und σ = 1 • t-Wert erlaubt Aussage darüber, wie wahrscheinlich es ist, dass ein Stichprobenmittelwertsunterschied bei gegebenem Standardfehler mit gegebenen Freiheitsgraden (Stichprobenumfang n – 1) im Modell H0 vorkommt.
Experimentieren • t-Wert erlaubt Aussage darüber, wie wahrscheinlich es ist, dass ein Stichprobenmittelwertsunterschied bei gegebenem Standardfehler mit gegebenen Freiheitsgraden (Stichprobenumfang n – 1) im Modell H0 vorkommt. • Diese Wahrscheinlichkeit entspricht der Irrtumswahrscheinlichkeit, vom Stichprobenmittelwert auf das Populationsmodell H1 zu schließen, obwohl das Populationsmodell H0 zutrifft • Diese Wahrscheinlichkeit heißt -Fehler • Die Inferenzstatistik minimiert den -Fehler: ein Mittelwertsunterschied gilt dann als statstisch signifikant, wenn der -Fehler kleiner als 5% ist: p < .05
Experimentieren • Varianzanalyse: Generalisierung des t-Tests • Varianzanalytisch gesprochen: Modell H1 wird angenommen, wenn die durch H1 aufgeklärte Varianz relativ zur Fehlervarianz (Varianz in H0) signifikant groß ist Modell H0 Modell H1 μ1 μ0 μ2