1 / 5

IL TEOREMA DI PITAGORA APPLICATO AL ROMBO E AL TRAPEZIO

IL TEOREMA DI PITAGORA APPLICATO AL ROMBO E AL TRAPEZIO. Di Susanna Lamberti 2°B. IL ROMBO. OB= CB2-CO2. CO= BC2-BO2. dM. CB= CO2+OB2. dm. CONSIDERATO IL TRIANGOLO CBO POSSIAMO TROVARE: LA META’ DELLA DIAGONALE MAGGIORE, DI QUELLA MINORE E UN LATO DEL ROMBO.

ellis
Download Presentation

IL TEOREMA DI PITAGORA APPLICATO AL ROMBO E AL TRAPEZIO

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IL TEOREMA DI PITAGORA APPLICATO AL ROMBO E AL TRAPEZIO Di Susanna Lamberti 2°B

  2. IL ROMBO OB= CB2-CO2 CO= BC2-BO2 dM CB= CO2+OB2 dm CONSIDERATO IL TRIANGOLO CBO POSSIAMO TROVARE: LA META’ DELLA DIAGONALE MAGGIORE, DI QUELLA MINORE E UN LATO DEL ROMBO. COSI’ FACENDO POSSIAMO TROVARE L’AREA E IL PERIMETRO

  3. TRAPEZIO RETTANGOLO CB= CH2+HB2 CH= CB2-HB2 HB CB2-CH2 h DIFFERENZA TRA LE BASI AB-DC

  4. TRAPEZIO ISOSCELE AD= AH2+HD2 AB-DC 2 AH= DA2-DH2 h DH= DA2-AH2

  5. TRAPEZIO SCALENO DAH = CKB H K

More Related