1 / 9

Regresi Linier

Regresi Linier. Fungsi : Mempelajari pengaruh variabel independen (bebas) terhadap variabel dependen (tergantung) Jenis : 1. RL Sederhana : - satu var. tergantung - satu var. bebas 2. RL Ganda : - satu var. tergantung

emilia
Download Presentation

Regresi Linier

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Regresi Linier Fungsi : Mempelajari pengaruh variabel independen (bebas) terhadap variabel dependen (tergantung) Jenis : 1. RL Sederhana : - satu var. tergantung - satu var. bebas 2. RL Ganda : - satu var. tergantung - var. bebas lebih dari satu

  2. Regresi Linier Sederhana Bentuk Pengaruh : X (var. bebas) Y (var. tergantung) Syarat : 1. Data berskala minimal interval 2. Data berdistribusi normal

  3. Persamaan Regresi Persamaan Regresi : Y = 0 + 1 X atau

  4. Koefisien Regresi Dimana :

  5. Uji Kemaknaan Model Hipotesis : H0 : model tidak fit / cocok H1 : model fit / cocok

  6. Uji Kemaknaan Model Dimana : JKT = JKR = JKS = JKT - JKR KTR = JKR/k KTS = JKS /(n-k-1) n = banyaknya data k = banyaknya var. bebas

  7. Uji Kemaknaan Model Pengambilan keputusan : Untuk menarik kesimpulan (apakah H0 diterima atau ditolak ), digunakan tabel-Fdengan derajat bebas (k,(n-k-1)) dan tingkat signifikansi . H0 ditolak, jika : Fhit > Ftabel

  8. Uji Kemaknaan Koefisien Regresi Untuk b0 Hipotesis : H0 : 0 = 0 H1 : 0  0 Dimana : db = db sisa s =  KTS

  9. Uji Kemaknaan Koefisien Regresi Untuk b1 Hipotesis : H0 : 1 = 0 H1 : 1  0 Dimana : db = db sisa s =  KTS

More Related