1 / 16

INTEGRAL CALIBRADO

INTEGRAL CALIBRADO. Integral de Riemann Generalizado Integral de Henstock-Kurzweil. Definições de INTEGRAL. Integral de Riemann Integral de Lebesgue Integral Impróprio de Riemann Integral Calibrado Ralph Henstock (1955) Jaroslav Kurzweil (1957). Definições de INTEGRAL.

fran
Download Presentation

INTEGRAL CALIBRADO

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. INTEGRAL CALIBRADO Integral de Riemann Generalizado Integral de Henstock-Kurzweil Maria Cristina Gonçalves Silveira de Serpa

  2. Definições de INTEGRAL • Integral de Riemann • Integral de Lebesgue • Integral Impróprio de Riemann • Integral Calibrado Ralph Henstock (1955) Jaroslav Kurzweil (1957)

  3. Definições de INTEGRAL Integral Calibrado Integral de Lebesgue • Integral Impróprio de Riemann Integral de Riemann

  4. A definição deIntegral de Riemann Sejam f: [a,b]→R uma função e V ∈R. V é o integral de Riemann de f e escreve-se V= se, para cada Ɛ > 0, Ǝ δ > 0, tal que: ∀ n ∈N e os números t0,t1 , t2 ,…, tn e s1, s2 ,…, sn, satisfazendo a = t0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤…≤ tn-1 ≤ sn ≤ tn = b e ti - ti-1 < δ, para todo o i, então

  5. Sejam f: [a,b]→R uma função e V ∈R. V é o integral calibrado de f e escreve-se V= se, para cada Ɛ > 0, Ǝ δ: [a,b] → (0,+∞): ∀ n ∈N e os números t0, t1 , t2 ,…, tn e s1, s2 ,…, sn, satisfazendo a = t0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤…≤ tn-1 ≤ sn ≤ tn = b e ti - ti-1 < δ(si), para todo o i, então A definição deIntegral Calibrado

  6. O que há de novo? --- δ --- • Integral de Riemann • δ é uma constante positiva • Integral Calibrado • δ é uma função positiva, chamada calibre

  7. Exemplo comIntegral Calibrado Temos: Dado Ɛ > 0, seja e para s > 0, δ(s) > 0 é tal que: Demonstração: Seja f uma função tal que: Com a definição integral calibrado, temos:

  8. Exemplo comIntegral Calibrado Logo, , pelo que concluímos que existe uma função δ, nas condições exigidas para mostrarmos que Concretizando, podemos considerar a função: , que satisfaz as condições.

  9. Exemplo comIntegral Calibrado

  10. Teorema Fundamental do Cálculo Sejam F:[a,b] → R, uma função diferenciável e f a sua derivada: F’(x) = f(x), para cada x ∈ [a,b]. Então, f é integrável em [a,b] e tem-se: Temos então um calibre δ sobre [a,b]. Seja para cada 1 ≤ j ≤ m, xj – δ(xj) ≤ aj-1 ≤ xj ≤ aj ≤ xj+ δ(xj) Demonstração: Fixado Ɛ > 0. Para cada x ∈ [a,b], como F’(x) = f(x), Ǝ δ(x) > 0, tal que, para cada u ∈[a,b] ∩ [x –δ(x),x +δ(x)], temos:

  11. Teorema Fundamental do Cálculo

  12. Teorema Fundamental do Cálculo

  13. Teorema da Convergência Monótona Sejam f : I → R uma função e fk : I → R , k ∈N uma sucessão de funções, verificam-se as seguintes condições: • A sucessão (fk)k converge pontualmente para f • A sucessão (fk)k é monótona • Cada função fk é integrável • A sucessão real (∫I fk)k tem limite finito Então f é integrável em I e ∫I f = lim ∫I fk K → ∞ Este Teorema não é aplicável ao Integral de Riemann

  14. Teorema da Convergência Monótona Corolário Sejam f : I → R uma função e fk : I → R , k ∈N uma sucessão de funções, verificam-se as seguintes condições: • A série Σkfk converge pontualmente para f • Para cada k ∈ N e cada x ∈ I, temos fk (x) ≥ 0 • Cada função fk é integrável • A série Σk (∫I fk)k converge Então f é integrável em I e

  15. Teorema da Convergência Dominada Este Teorema não é aplicável ao Integral de Riemann Lema: Sejam f1, f2, …, fn : I → R funções integráveis Se existe uma função integrável g: I → R tal que, para cada x ∈ I e 1 ≤ k ≤ n tem-se: g(x) ≤ fk(x), então também são integráveis: min {f1, f2, …, fn} e max {f1, f2, …, fn}

  16. Teorema da Convergência Dominada Sejam f : I → R uma função e fk : I → R , k ∈N uma sucessão de funções, verificam-se as seguintes condições: • A sucessão (fk)k converge pontualmente para f • Cada função fk é integrável • Existem duas funções g, h : I → R tal que g(x) ≤ fk(x) ≤ h(x), para cada k ∈I Então a sucessão (∫I fk)k tem limite finito, f é integrável em I e

More Related