280 likes | 922 Views
INTEGRAL. Widita Kurniasari. Modul 7. Agustus 2006. PENGERTIAN. Kebalikan dari diferensial/derivatif Anti diferensial/derivatif Kegunaan : Mencari fungsi asal jika diketahui fungsi turunannya intergal tak tentu (indefinite integral)
E N D
INTEGRAL Widita Kurniasari Modul 7 Agustus 2006
PENGERTIAN • Kebalikan dari diferensial/derivatif Anti diferensial/derivatif • Kegunaan : • Mencari fungsi asal jika diketahui fungsi turunannya intergal tak tentu (indefinite integral) • Menentukan luas bidang dari sebuah kurva yang dibatasi sumbu X integral tertentu (definite integral)
INTEGRAL TAK TENTU • Nilai domain tidak ditentukan • Jika Y = F(x) dan Y’ = F’(x) = f(x), maka “integral dari f(x) terhadap X” : • Keterangan • : tanda integral • f(x) : integran • F(x) : fungsi primitif • dx : proses integral • c : konstanta
INTEGRAL TERTENTU • Nilai domainnya ditentukan : a b a : batas bawah b : batas atas
PENYELESAIAN INTEGRAL • Rumus Dasar • Cara Substitusi • Cara Integral Parsial
RUMUS DASAR INTEGRAL • 0 dx = c • a dx = ax + c • xn dx = 1/(n+1) xn+1 + c • 1/x dx = ln x + c • 1/(ax+b) dx = 1/a ln (ax+b) + c • ex dx = ex + c • eax+b = 1/a eax+b + c • ax dx = 1/lna ax + c
CONTOH SOAL • (x3 – 5x2 + x + 7/x) dx • 100e2x dx • Diketahui f ’(x) = 3x2 – 6x + 10 dan f(2) = 20. • Tentukan f(x) ! • Hitung f (6) • Hitung
CARA SUBSTITUSI Digunakan jika integran merupakan hasil kali/bagi dari fungsi x yang dapat didiferensialkan serta dapatdinyatakan sebagai kelipatan konstanta dari fungsi lainnya, U du/dx.
CARA INTEGRAL PARSIAL Digunakan jika integran merupakan hasil kali/bagi dari fungsi x yang dapat didiferensialkan, tetapi tidak dapat dinyatakan sebagai kelipatan konstanta dari fungsi lainnya, U du/dx.
CONTOH SOAL • (3x + 10)7 dx • 12x2(x3 + 2)3 dx • 2x ex dx
APLIKASI INTEGRAL DALAM ILMU EKONOMI Widita Kurniasari Modul 8 Agustus 2006
APLIKASI INTEGRAL • Diketahui MC = 9Q2 + 30Q + 25. TC sebesar 4680 ketika Q sebesar 10 unit. • Berapa FC ? • Tentukan fungsi TC ! • Diketahui MPC = 0,8 dan autonomous consumption = 1000. Tentukan fungsi konsumsi ! • Surplus konsumen dan surplus produsen
CONTOH SOAL • Fungsi permintaan Q = 90 - 2P. Hitung surplus konsumen ketika Q = 25 • Fungsi penawaran P = Q2 + 3. Hitung surplus produsen ketika P = 12 • Fungsi permintaan P = 25 – Q2 dan penawaran P = 2Q + 1. Hitung surplus konsumen dan surplus produsen saat terjadi market equilibrium ! • Fungsi permintaan Q = 15 – P dan penawaran Q = 0,25P2 - 9. Hitung surplus konsumen dan surplus produsen saat terjadi keseimbangan pasar !
LATIHAN SOAL Hitung SK dan SP ketika terjadi ME • Fungsi permintaan P = 58 – 0,5Q dan penawaran P = 0,5Q2 + Q + 4. • Fungsi permintaan Q = 128 – 2P dan penawaran Q = 0,5P2 – 2,5P - 25. • Fungsi permintaan Q = – 0,5P + 530 dan penawaran P = 0,5Q2 + 10Q + 250.