500 likes | 3.73k Views
2.3 Persamaan Keadaan Gas Nyata. Pada tahun 1873 Van der Waals, seorang fisikawan bangsa Belanda menjabarkan persamaan gas nyata sebagai berikut. a dan b disebut tetapan Van der Waals. 2.5a. Untuk 1 mol. 2.5b. Untuk n mol. Tabel 2.1 Tabel Tetapan Gas. Persamaan Beattie-Bridgeman.
E N D
2.3 Persamaan Keadaan Gas Nyata • Pada tahun 1873 Van der Waals, seorang fisikawan bangsa Belanda menjabarkan persamaan gas nyata sebagai berikut a dan b disebut tetapan Van der Waals 2.5a Untuk 1 mol 2.5b Untuk n mol
Persamaan Beattie-Bridgeman • Merupakan modifikasi dari persamaan Virial dengan • Ao, a,Bo, b dan C adalah tetapan yang berbeda untuk setiap gas 2.7 A = Ao(1- a/v) 2.8 B = Bo(1-b/v) 2.9 = C/vT3 2.10
2.4 Bidang p-v-T Gas Sempurna • Jika Variabel p, v, dan T pada persamaan keadaan gas sempurna digambarkan pada tiga sumbu saling tegak lurus diperoleh bidang keadaan gas sempurna isometrik isobarik p T v
p p v3 v2 T3 T2 v1 T1 T v Proses Isotermal Proses isokorik pv = RT = C p = R/v T = CT
v p3 p2 p1 T Proses isobarik v = R/p T = CT
2.5 Bidang p-v-T Gas Nyata • Gas nyata memiliki sifat: • Molekul molekul tarik menarik dan mempunyai volume • Dapat menjadi cair dan padat • Hukum-hukum Boyle dan Gay-Lussac hanya diikuti oleh gas nyata secara pendekatan, yaitu pada tekanan rendah jauh dari keadaan cairnya Perbedaan sifat gas sempurna dengan gas nyata tampak jelas pada diagram p-v-T atau prpses Isotermal
p T3 p T2 K T1 ◦ T3 Tk v c b T2 a c Proses Isotermal b T1 a v b. Gas Nyata a. Gas Sempurna
Gas nyata ketika tekanan masih rendah, (volume besar), pemampatan juga diikuti oleh kenaikan tekanan seperti pada gas sempurna ( garis a-b) • Setelah itu walaupun volume diperkecil tekanan tidak berubah, garis b-c disebut garis koeksistensi cair-gas, yaitu fase cair dan gas (uap) dapat berada bersama. • Di titik b mulai terbentuk cairan dan di titik c semua uap telah menjadi cair • Pemampatan selanjutnya akan diikuti kenaikan tekanan yang besar
Jika proses ini diulangi pada suhu T2> T1 maka garis b-c menjadi lebih pendek, dan pada suhu tertetu (suhu kritis (Tk) garis koeksistensi menjadi nol. Tekanannya diberi simbol pk dan volumenya vk. • Di atas suhu kritis gas nyata tak dapat dicairkan dengan cara dimampatkan. Dan gas nyata mengikuti dengan baik Hukum Boyle.
p T3 K ◦ T2 Tk T1 v 0 TETAPAN GAS VAN DER WAALS • Grafik persamaan Van der Waals untuk beberapa suhu adalah: Bila ruas kiri dan kanan dikalikan dengan v2/p diperoleh
a b Persamaan ini mempunyai tiga akar v1, v2, dan v3 Pada suhu kritis Tk ketiga akar berimpit dan tekanan yang bersangkutan adalah tekanan kritis pk, sehingga persamaannya menjadi c
Mempunyai tiga akar nyata yang sama yaitu vk • Persamaan derajat tiga dalam v yang ketiga akarnya sama dengan vk adalah • (v- vk) 3 = v3 – 3vkv2 + 3 vk2v – vk3 = 0 … d • Kedua persamaan c dan d adalah identik sehingga koefisien yang bersangkutan dapat disamakan
I. 3vk =b + RTk/pk • II. 3vk2 = a/pk • III. vk3 = ab/pk Dari ketigapersamaaninidapatdiperoleh: vk = 3b e Tk = 8a/ (27 bR) f pk = a/(27 b2) g (pkvk)/Tk = (3/8) R h Menurutpersamaan (h) RTk/(pkvk) = 8/3 =2,67
Hasil eksperimen beberapa gas diperoleh ; • He = 3,13 CO2 = 3,49 • H2 = 3,03 C6H6 = 3,76 • Dari persmaan Vk = 3b atau vk/b = 3 • Sedangkan dari hasil eksperimen diperoleh • A = 1,41 CO2 = 1,86 • H2 = 2,8 O2 = 1,89
Contoh soal 2.1 • Berapakah tekanan yang ditimbulkan oleh 3 gram gas nitrogen di dalam bejana yang voluenya 5 liter pada suhu 17 oC. Diketahui bobot molekul nitrogen 28 dan diangap sebagai gas sempurna.Nyatakan satuannya dalam atmosfer dan pascal. • Jawab Diketahui m = 3 gram, T = (17 + 273,15 ) K = 290,15 K V = 5 ltr, M = 28 gram/mol = 28 kg/kmol P = ……. atm p = ………….Pa Penyelesaian pV = (m/M) RT …………..p = (m/M) RT /V = (3 gram/ 28 gram mol-1)( 0,082 ltr atm mol-1 K-1)(290,15)/5 ltr = 0,51 atm
pV = (m/M) RT …………..p = (m/M) RT /V = (3 gram/ 28 gram mol-1)( 8,314 J mol-1 K-1) (290,15)/5x10-3 m3 = 51692.3 Pa
Contoh Soal 2.2 • Sebuah bejana volumenya 2 liter dilengkapi dengan kran, berisi gas oksigen pada suhu 300 K dan tekanan 1 atm. Sistem dipanasi hingga menjadi 400 K dengan kran terbuka. Kran lalu ditutup dan bejana dibiarkan mendingin kembali sampai suhu semula. Hitunglah: • a. tekanan akhir? • Berapa gram oksigen yang masih tertinggal dalam bejama? • Penyelesaian O2 O2 O2 1 2 3
Diketahui: • Keadaan (1) Keadaan (2) Keadaan (3) • P1 = 1 atm p2 = 1 atm p3 =? • V1 = 2 liter V2 =2 liter V3 = 2 liter • T1 = 300 K T2 = 400 K T3 = 300 K Proses (1) ke keadaan (2) Proses pemanasan dengan kran terbuka (tekanan tetap). Perubahan volume bejana dapat diabaikan. a. Keadaan (2) dan (3) mempunyai massa yang sama, karena waktu mendigin kran ditutup. Pada keadaan (2) dan (3) berlaku persamaan p2V2 = (m/M)RT2 dan p3V3 = (m/M)RT3
Persamaan pertama dibagi persamaan kedua menghasilkan : p2/p3 = T2/T3, ingat V2 = V3 = 2 liter atau p3 = (T2/T3) p2 = (300 K/400 K)x 1 atm = 0,75 atm b. Untuk mencari massa yang masih tertingal dalam bejana dapat menghitung dari keadaan (2) atau (3). Misalnya kita pilih keadaan (3) p3V3 = (m/M) RT3 atau m = p3V3 M/(RT3) = (0,75 atm)(2 liter)(32 gram mol-1)/(0,082 liter .atm mol -1 K-1x 300K) m = 1,95 gram
2-3 Suatu gas ideal terdiridari 4 mole, mula-mulatekanannya 2 atm. Dan volumenya 0,1 m3. Gas dipanaskanpada volume konstan (isometrik) sehinggatekanannyamenjadi 2 kali tekanansemula. Kemudian gas diekspansikanpadatemperaturkonstan (isotermal) hinggatekanannyakembaliketekananmula-mula, kemudian gas dikompresikanpadatekanankonstanhinggavolumenyakembalike volume mula-mula. • (a) Gambarkanprosestersebutpada diagram p-V, p-T, danV-T (b) Tentukantemperaturakhirprosesisometrik
p p 2 2 p2 p2 • Jawaban2-3 a 3 1 P1=p3 p1 1 3 V T V3 V1= V2 T1 T2=T3 V 3 V2 V1 1 2 T T2= T3 T1
b) n = 4 mol, V1 = V2 = 0,1 m3 = 100 ltr p1 = 2 atm R = 0,082 ltr atm mol-1K-1 p2 = 4 atm Keadaan 1 p1V1 = nRT1 atau T1 = p1V1/nR T1 = (2 atm x 100 lte)/(4 mol x 0,082 ltr.atm mol-1 K-1 )= 609 ,76 K Proses 1 ke 2 (isometrik) p1/T1 = p2/T2 …… T2 = p2T1/p1 = 2p1.T1/p1 T2= 2 T1 = 2x 609,76= 1219,5 K