110 likes | 696 Views
MATEMATIKA. SMU. Ke l a s I – S em es t e r 1. Bentuk Pangkat, Akar, dan Logaritma. BAB 1. Persamaan dan Fungsi Kuadrat. BAB 2. Sistem Persamaan Linier dan Kuadrat. BAB 3. Pertidaksamaan. BAB 4. Kita bahas bersama, yuk . . . !!!. BAB 2. Persamaan dan Fungsi Kuadrat. 2-1.
E N D
MATEMATIKA SMU Kelas I– Semester 1 Bentuk Pangkat, Akar, dan Logaritma BAB 1 Persamaan dan Fungsi Kuadrat BAB 2 Sistem Persamaan Linier dan Kuadrat BAB 3 Pertidaksamaan BAB 4 Kita bahas bersama, yuk . . . !!!
BAB 2 Persamaan dan Fungsi Kuadrat 2-1 Bentuk Umum Persamaan Kuadrat Siswa dapat: Menjelaskan model matematika berbentuk persamaan kuadrat Menjelaskan arti penyelesaian suatu persamaan khususnya penyelesaian persamaan kuadrat
PERSAMAAN KUADRAT 2-1 Bentuk Umum Persamaan Kuadrat Bentuk umum atau Bentuk Baku persamaan kuadrat adalah: + bx + c ax2 = 0 Dengan a,b,c R dan a 0 serta x adalah peubah (variabel) a merupakan koefisien x2 b merupakan koefisien x c adalah suku tetapan atau konstanta
Contoh 1: Tentukan nilai a, b, dan c dari persamaan kuadrat berikut: c. 10 + x2 - 6x = 0 a. x2 – 3 = 0 d. 12x – 5 + 3x2 = 0 b. 5x2 + 2x = 0 Jawab: a. x2 – 3 = 0 Jadi a = , b = , dan c = 1 0 -3 b. 5x2 + 2x = 0 Jadi a = , b = , dan c = 5 2 0 Jadi a = , b = , dan c = 1 -6 10 c. 10 + x2 - 6x = 0 Jadi a = , b = , dan c = 3 12 -5 d. 12x – 5 + 3x2 = 0
Contoh 2: C. 2x - 3 = Nyatakan dalam bentuk baku, kemudian tentukan nilai a, b dan c dari persamaan : a. 2x2 = 3x - 8 b. x2 = 2(x2 – 3x + 1) Jawab: a. 2x2 = 3x – 8 Kedua ruas ditambah dengan –3x + 8 – 3x + 8 2x2 – 3x + 8 = 3x – 8 2x2 – 3x + 8 = 0 Jadi, a = , b = dan c = -3 8 2
Jawab: c. 2x - 3 = b. x2 = 2(x2 – 3x + 1) x2 = 2x2 – 6x + 2 Kedua ruas dikurangi denganx2 x2 - x2 = 2x2 – 6x + 2 - x2 0 = x2 – 6x + 2 x2 – 6x + 2 = 0 1 Jadi a = , b = , dan c = -6 2 Kedua ruas dikalikan denganx (2x – 3)x = 5 2x2 – 3x = 5 2x2 – 3x – 5 = 0 Jadi a = , b = , dan c = 2 -3 -5
Ingat .… (a + b)2 = a2 + 2ab + b2 (a - b)2 = a2 - 2ab + b2 (a + b)(p + q) = ap + bp + aq + bq (a + b)(a - b) = a2 - b2 =??? (x - 3)2
f. – x = 4 g. h. Latihan…. Nyatakan ke dalam bentuk baku persamaan kuadrat, kemudian tentukan nilai a, b, dan c! a. x2 = 4 – 3x b. (x – 1)2 = x - 2 c. (x + 2)( x – 3) = 5 d. (2 - x)( x + 3) = 2(x – 3) e. (x + 2)2 – 2(x + 2) + 1 = 0 Buku Matematika SMU Latihan 1, hal 78 …
g. Pembahasan …. b. (x – 1)2 = x - 2 Kedua ruas ditambahkan dengan–x + 2 x2 – 2x + 1 = x – 2 -x + 2 x2 – 2x + 1 -x + 2 = x – 2 Jadi a = , b = , dan c = 1 -3 3 x2 – 3x + 3 = 0 d. (2 - x)( x + 3) = 2(x – 3) _________________ x(x-1) 2x – x2 + 6 - 3x = 2x – 6 2(x – 1) = 3x + 1 x(x – 1) …??? 2x – 6 –x2 - x + 6 = 2x – 2 = 3x + x2 - x –x2 - 3x + 12 = 0 …??? 2x – 2 = 2x + x2 0 = X2 + 2 Jadi a = , b = , dan c = -1 -3 12 X2 + 2 = 0 Jadi a = , b = , dan c = 1 0 2