150 likes | 497 Views
Automatyka. Wykład 25 Regulatory dyskretne. u. u (0). e. u ( T p ). e (0). u (2 T p ). u (3 T p ). e ( T p ). e (2 T p ). e (3 T p ). 0. t. 3 T p. 2 T p. T p. 0 T p 2 T p 3 T p. Regulator dyskretny P. Równanie regulatora analogowego typu P.
E N D
Automatyka Wykład 25 Regulatory dyskretne
u u(0) e u(Tp) e(0) u(2Tp) u(3Tp) e(Tp) e(2Tp) e(3Tp) 0 t 3Tp 2Tp Tp 0 Tp2Tp3Tp Regulator dyskretny P Równanie regulatora analogowego typu P Równanie regulatora dyskretnego P uzyskujemy z dyskretyzacji równania regulatora analogowego: (1) Regulator dyskretny P u e t (2)
Obliczanie jako sumy pól prostokątów Regulator dyskretny PI Równanie regulatora analogowego typu PI Przez dyskretyzację równania regulatora analogowego otrzymujemy równanie regulatora dyskretnego PI: (3) e 0 Tp 2Tp 3Tp (n–1)TpnTp t
Transmitancja dyskretna regulatora PI (4) Transmitancja dyskretna (4) wynika również z transmitancji operatorowej regulatora analogowego PI po podstawieniu do wzoru
e e Jeżeli równanie regulatora dyskretnego zapiszemy w postaci: (5) to transmitancję dyskretną regulatora PI określa wzór (6) 0 Tp2Tp3Tp (n-3)Tp (n-2)Tp (n-1)Tp nTp
Obliczanie jako sumy pól trapezów e 0 Tp 2Tp 3Tp (n–1)Tp nTpt (7)
Transformata Z sygnału sterującego: Stąd (8) Wzór (8) otrzymamy również po zastosowaniu metody Tustina do regulatora analogowego o transmitancji operatorowej
Regulator dyskretny PID Równanie regulatora analogowego PID Przez dyskretyzację równania regulatora analogowego otrzymujemy równanie regulatora dyskretnego PI reprezentujące algorytm pozycyjny regulatora: (9) Transmitancja dyskretna: (10)
Algorytm pozycyjny (metoda trapezów): W przypadku regulatora dyskretnego do sterowania obiektem można również wykorzystać przyrostsygnału sterującego:
Regulator rozmyty Proces regulacji w układzie z regulatorem rozmytym opiera się na bazie reguł, której elementami są zmienne lingwistyczne, charakteryzowane na przykład słowami „ujemny”, „zerowy”, „dodatni” lub „mały ujemny”, „średni ujemny” , „duży ujemny”, „bliski zera”, „mały dodatni”, „średni dodatni”, „duży dodatni” itp. Każda wartość zmiennej lingwistycznej opisywana jest za pomocą zbioru rozmytego (ang. fuzzy set). Pojęcie zbioru rozmytego zostało wprowadzone w roku 1965 przez L. Zadeha i jest uogólnieniem matematycznego pojęcia zbioru. Uogólnienie to polega na przypisaniu elementowi zbioru pewnej liczby μ z przedziału [0, 1], będącej wartością tzw. funkcji przynależności. Wartość μ funkcji przynależności informuje w jakim stopniu dany element (zmienna lingwistyczna) przynależy do podanego zbioru. Funkcje przynależności mogą mieć różne kształty. Najbardziej rozpowszechnione są funkcje trójkątne, trapezowe i Gaussa (slajd 11 ) Na regulację rozmytą składają się trzy następujące procesy: proces rozmywania (fuzyfikacji) danych podawanych na wejście regulatora, określający stopień ich przynależności do danego zbioru rozmytego, proces wnioskowania, w którym na podstawie zbioru reguł i rozmytych danych wejściowych, obliczana jest wynikowa funkcja przynależności i proces wyostrzania (defuzyfikacji), w którym na podstawie wynikowej funkcji przynależności obliczana jest ostra wartość wyjściowa regulatora.
μ μ e μ 0 e 0 e 0 a) b) c) Funkcje przynależności: trójkątne (a), trapezowe (b), Gaussa (c)
μ(u) μ(e) e Wyostrzanie Rozmywanie Wnioskowanie Baza reguł W regulatorze rozmytym przedstawionym na rysunku poniżej rozmywaniu podlega zbiór wartości błędu regulacji e, podawanych na wejście regulatora. Rozmywanie zbioru wartości błędu regulacji polegana przyporządkowaniu tych wartości do poszczególnych zbiorów rozmytych, których liczba zależy od liczby terminów lingwistycznych określających wartości błędu regulacji. Na rysunku poniżej przedstawiono przykładowo rozmywanie zbioru wartości błędu regulacji w przypadku trzech zbiorów rozmytych odpowiadających terminom lingwistycznym: ujemny, zerowy i dodatni.
μ(e) zerowy ujemny dodatni 1 0 błąd regulacji e Uzyskane w procesie rozmywania zbiory rozmyte wykorzystuje się w bazie reguł wnioskowania o postaci JEŻELI e JEST ujemny, TO u JEST ujemny JEŻELI e JEST zerowy, TO u JEST zerowy JEŻELI e JEST dodatni, TO u JEST dodatni. W wyniku procesu wnioskowania dla każdej z reguł przypisana zostaje jedna wartość funkcji przynależności sygnału sterującego u do danego zbioru μ(u). Wyostrzanie prowadzi do uzyskania ściśle zdeterminowanej wartości sygnału sterującego u. Jedną z najpopularniejszych metod obliczeniowych jest metoda średniej ważonej z centrów odpowiedzi uzyskanych ze wszystkich reguł, gdzie wagami są wyznaczone stopnie przynależności μ(u) poszczególnych sygnałów sterujących u.