380 likes | 929 Views
EE534 VLSI Design System Summer 2004 Lecture 06: Static CMOS inverter (CHAPTER 5). V DD. V out. C L. Review: CMOS Inverter VTC. NMOS off PMOS res. NMOS sat PMOS res. NMOS sat PMOS sat. V out (V). NMOS res PMOS sat. NMOS res PMOS off. V in (V). NMOS in sat PMOS in non sat.
E N D
EE534VLSI Design SystemSummer 2004 Lecture 06: Static CMOS inverter (CHAPTER 5)
VDD Vout CL Review: CMOS Inverter VTC NMOS off PMOS res NMOS sat PMOS res NMOS sat PMOS sat Vout (V) NMOS res PMOS sat NMOS res PMOS off Vin (V)
NMOS in sat PMOS in non sat NMOS off PMOS in non sat NMOS in sat PMOS in sat NMOS in non sat PMOS in sat NMOS in nonsat PMOS off Complete voltage transfer characteristics, CMOS inverter
Review: CMOS Inverter: VTC PMOS NMOS Vin=4V VCC Vin=3V Drain current IDS Vout Vin=2V Vin=1V Vin Vout = VDS VCC 0 1 2 3 4 • Output goes completely to Vcc and Gnd • Sharp transition region
VDD VDD Rp Vout Vout CL CL Rn Vin = 0 Vin = V DD CMOS Inverter: Switch Model of Dynamic Behavior • Gate response time is determined by the time to charge CL through Rp (discharge CL through Rn)
CMOS inverter operation Vcc • NMOS transistor: • Cutoff if Vin < VTN • Linear if Vout < Vin – VTN • Saturated if Vout > Vin – VTN • PMOS transistor • Cutoff if (Vin-VCC) < VTP → Vin < Vcc+VTP • Linear if (Vout-VCC)>Vin-Vcc-VTP → Vout>Vin - VTP • Sat. if (Vout-VCC)<Vin-Vcc-VTP → Vout < Vin-VTP Vin Vout
CMOS inverter design consideration • The CMOS inverter usually design to have, (i) VTN =|VTP| (ii) K´n(W/L)=K´p(W/L) But K´n>K´p (because n>p) How equation (ii) can be satisfied? This can be achieved if width of the PMOS is made two or three times than that of the NMOS device. This is very important in order to provide a symmetrical VTC, results in wide noise margin.
CMOS inverter design consideration (cont.) • Increase W of PMOS kp increases VTC moves to right kp=kn VCC • Increase W of NMOS kn increases VTC moves to left kp=5kn Vout kp=0.2kn • For VTH = Vcc/2 kn = kp Wn 2Wp VCC Vin
Good PMOS Bad NMOS Nominal Bad PMOS Good NMOS Impact of Process Variation on VTC Curve Vout (V) Vin (V) • Process variations (mostly) cause a shift in the switching threshold
Effects of Vth adjustment • Result from changing kp/kn ratio: • Inverter threshold VTH Vcc/2 • Rise and fall delays unequal • Noise margins not equal • Reasons for changing inverter threshold • Want a faster delay for one type of transition (rise/fall) • Remove noise from input signal: increase one noise margin at expense of the other
Concept of Noise Margins VI NML=VIL-VOL(noise margin for low input) NMH=VOH-VIH(noise margin for high input)
CMOS inverter: VIL • KCL: IDp=IDn • Differentiate and set dVout/dVin to –1 • Solve simultaneously with KCL to find VIL
CMOS inverter: VIH • KCL: • Differentiate and set dVout/dVin to –1 • Solve simultaneously with KCL to find VIH
CMOS inverter: VIL and VIH for Ideal VTH(Symmetrical, Kn=Kp) • Assuming VT0,n=-VT0,p, and kR = 1, (symmetrical inverter)
CMOS inverter: VTH • KCL: • Solve for VTH = Vin = Vout
CMOS inverter: Ideal VTH (Symmetrical, Kn=Kp) • Ideally, Vth = VCC/2 • Assuming VT0,n = VT0,p, For ideal symmetrical inverter required that