1 / 8

Podstawowe treści I części wykładu: Spektroskopia masowa.

Podstawowe treści I części wykładu: Spektroskopia masowa. Atom i wiązania chemiczne-spektroskopia molekularna. Metody dyfrakcyjne. Rezonans magnetyczny. Badanie struktury powierzchni. Literatura do I części wykładu -FIZYKA WSPÓŁCZESNA W ZASTOSOWANIACH:

Download Presentation

Podstawowe treści I części wykładu: Spektroskopia masowa.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Podstawowe treści I części wykładu: • Spektroskopia masowa. • Atom i wiązania chemiczne-spektroskopia molekularna. • Metody dyfrakcyjne. • Rezonans magnetyczny. • Badanie struktury powierzchni.

  2. Literatura do I części wykładu -FIZYKA WSPÓŁCZESNA W ZASTOSOWANIACH: 1.K.Pigoń, Z. Ruziewicz, Chemia fizyczna t.2, PWN 2.P.W.Atkins, Chemia fizyczna, PWN 3.A.Oleś, Metody eksperymentalne w fizyce ciała stałego, WNT

  3. Powtórzenie-1 wykład. • Źródła pola elektrycznego i magnetycznego. • Ruch ładunku w polu E • Ruch ładunku w polu B –podstawowe parametry toru ładunku • Praca wykonana przez siłę w polu elektrycznym i magnetycznym. • Zasada działania spektrometru masowego -schemat blokowy. • Jakie informacje można uzyskać przy pomocy spektrometru ? • Widma uzyskane przy pomocy spektrometru masowego-narysuj widmo H20

  4. Powtórzenie-2 wykład 1.Jakie informacje o cząstce można uzyskać rozwiązując równanie Schrödingera? 2.Czy funkcja falowa ma jakiś sens fizyczny? 3.Język pojęć w mechanice kwantowej 4.Atom wodoru w mechanice kwantowej- dozwolone poziomy energetyczne,liczby kwantowe, stany kwantowe, orbitale. 5. Atomy wieloelektronowe, poziomy energetyczne, zakaz Pauliego, układ okresowy pierwiastków. 6. Hybrydyzacja orbitali-sp3, sp2 7. Rodzaje wiązań chemicznych. 8.Podstawowe parametry wiązania-długość, energia. 9. Oscylacje i rotacje wiązań-stany energetyczne, „siła wiązania”

  5. Powtórzenie-3 wykład: 1.Schemat blokowy układu do pomiaru widm emisyjnych i absorpcyjnych 2. Rozpraszanie Ramana- układ do pomiaru widm ramanowskich. 3. Spektroskopia UV-VIS, efekt izotopowy, sprzężenie spin-orbita. 4. Widma oscylacyjne, oscylator harmoniczny dozwolone energie, reguły wyboru. Oscylator anharmoniczny. 5. Rodzaje oscylacji- informacje o wiązaniach uzyskane z widm oscylacyjnych. 6. Poziomy rotacyjne , energie, reguły wyboru. Moment bezwładności cząsteczek. 7. Spektroskopia Ramana a spektroskopia IR. 8. Określ energie fotonów potrzebne do przejść elektronowych, oscylacyjnych i rotacyjnych. 9.Fluorescencja i fosforescencja.

  6. Powtórzenie-4 wykład. 1.Co to jest interferencja i dyfrakcja? 2.Interferencja konstruktywna i destruktywna, spójność promieniowania 3.Jakie obiekty ulegają zjawiskom dyfrakcji i interferencji? 4.Rodzaje struktur w ciele stałym. 5.Komórka elementarna i sieci Bravais. Co pełni rolę stałej siatki w strukturze krystalicznej? 6.Zaplanuj doświadczenie, w którym następuje dyfrakcja na strukturze atomowej. 7.Równanie Bragga-obraz dyfrakcyjny dla mono i polikryształów 8.Wyznaczanie dhkl i parametrów komórki elementarnej. 9.Zdolność rozdzielcza dyfraktometru

  7. Powtórzenie-5 wykład 1.Moment magnetyczny, moment siły i energia potencjalna obwody kołowego z prądem. (pole obwodu S, prąd I) 2. Moment magnetyczny elektronu związany z jego ruchem orbitalnym i spinem. Magneton Bohra. 3.Moment magnetyczny atomów wieloelektronowych – diamagnetyki i paramagnetyki. 4.Spin protonu i neutronu-magnetyczne własności jądra atomowego. 5. Moment magnetyczny jądra atomowego-magneton jądrowy, współczynnik g 6.Efekt Zeemana-poziomy energetyczne jądra w polu B=0 i B0.-stany  i . 7. Podstawy fizyczne rezonansu magnetycznego-energia potrzebna do zmiany ustawienia spinu : a) elektronu b) nukleonu 8.Zależność częstości rezonansowej od lokalnego pola magnetycznego-prze- sunięcie chemiczne. Identyfikacja grupy atomów. Ilość atomów H . 9.Sprzężenie spin-spin- subtelna struktura widma-ilość linii dla grup CHn 10. Obrazowanie NMR (MRI) i jego zastosowanie w medycynie. 11. O czym informuje: ilość zaabsorbowanej energii, wielkość energii, czas relaksacji? 12. Porównanie tomografii rtg i MRI

  8. Powtórzenie- 6 wykład 1. Równanie Schrödingera -próg potencjału, bariera potencjału. 2.Prawdopodobieństwo przejścia cząstki przez barierę potencjału-prąd tunelowy 3.Zasada działanie mikroskopu polowego (FIM) i skaningowego mikroskopu tunelowego (STM) 4. Ostrze, układ przesuwający ostrze, układ do tłumienia drgań. 5.Na czym polega stałoprądowy i stałonapięciowy mod pracy mikroskopu? 6.Nanomanipulacje i nanolitografia. 7. Siły van der Waalsa. 8. Wykorzystanie siła van der Waalsa w mikroskopie sił atomowych (FIM) 9.Która z 3 opisanych metod służy do badania powierzchni metali, a która do badania izolatorów ?

More Related