1 / 39

Skenovací sondová mikroskopie

Skenovací sondová mikroskopie. Obsah. Skenovací tunelová mikroskopie Mikroskopie atomárních sil Skenovací sondová mikroskopie. Tunelová mikroskopie. 1981 Gerd Binning, Heinrich Rohrer IBM Zurych Neoptický mikroskop Povrch vzorků o velikosti několika nm Mikroelektronika (polovodiče)

Download Presentation

Skenovací sondová mikroskopie

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Skenovací sondová mikroskopie

  2. Obsah Skenovací tunelová mikroskopie Mikroskopie atomárních sil Skenovací sondová mikroskopie

  3. Tunelová mikroskopie 1981 Gerd Binning, Heinrich Rohrer IBM Zurych Neoptický mikroskop Povrch vzorků o velikosti několika nm Mikroelektronika (polovodiče) Rozvoj nanotechnologií

  4. Tunelová mikroskopie Různé interakce s povrchem Souhrnné označení rastrovací sondová mikroskopie (SPM, scanning probe microscopy) Mikroskopie atomárních sil – i nevodivé materiály

  5. SPM - principy Pohyb sondy v těsné blízkosti povrchu (několik nm) Velmi jemný pohyb sondy pomocí piezokrystalu Prodloužení či smrštění v závislosti na napětí Vysoké rozlišení - zabezpečení proti vibracím Pojem zvětšení se nepoužívá Obraz vytvářen na základě elektromechanické interakce sondy se vzorkem

  6. SPM Široká použitelnost Zobrazení povrchu Měření vlastností na atomární úrovni Manipulace Široká škála prostředí Vzduch Speciální atmosféra Kapaliny Vakuum Nízké i vysoké teploty

  7. SPM - principy Skutečné rozměry je nutné kalibrovat Sonda sleduje profil konstantní interakce pomocí zpětné vazby Předměty zkoumání: Kovy Polovodiče Molekuly Polymery Živé buňky

  8. Skenovací tunelová mikroskopie

  9. Skenovací tunelová mikroskopie (STM) Mapování povrchu pomocí pohybu (rastrování) vodivým hrotem (sondou) nad vodivým povrchem materiálu. Nevyžaduje složitou přípravu vzorku Informace pouze o povrchu

  10. STM Kvantová teorie tunelového jevu v praxi Jsou-li dva vodivé materiály v dostatečné blízkosti (ale ne v kontaktu), je pravděpodobné, že elektrony projdou z jednoho materiálu do druhého – tzv. tunelový proud Velikost tunelového proudu závisí: Exponenciálně na vzdálenosti Na přiloženém napětí

  11. STM - konstrukce Mechanická část Stolek k upevnění vzorku Polohovací zařízení Sonda Elektrická část Napájení Zpětná vazba Sběr signálu Ovládání pohybu Tlumení mechanických vibrací Vakuová komora

  12. STM - konstrukce Sonda Ostrý kovový hrot Pohyb v řádcích Řádově nm nad povrchem Přiloženo napětí ze zdroje Odsávání elektronů pronikajících přes potenciálovou bariéru na povrchu Nastavení výšky hrotu Piezoelektrický systém Změny tunelového proudu – obraz lokální hustoty elektronů

  13. STM - konstrukce Sonda Drobné nerovnosti – vysoký nárůst proudu Ze signálu zpracována na základě teoretických modelů struktura povrchu První mikroskopy – rozstřižený drát (1 nm) V současnosti Wolfram Zlato Pt/Ir

  14. STM Přednosti Vysoké sub-atomární rozlišení Zobrazování jednotlivých atomů V okolí hrotu lze vytvořit silné elektrické pole – vytržení atomu z povrchu Cílená manipulace Nevýhody Neposkytuje okamžitý vizuální obraz (obraz lokální hustoty elektronů) V případě povrchu tvořeného jedním prvkem použitelné Vyžaduje vodivý vzorek

  15. STM

  16. Mikroskopie atomárních sil

  17. Mikroskopie atomárních sil (AFM) Inovace STM Zobrazení i pomocí 3D modelu Mapování rozložení atomárních sil na povrchu Velmi vysoké rozlišení – i jednotlivé atomy 1986, G. Binnigem, C. Quat, C. Gerber

  18. AFM

  19. AFM Neoptický mikroskop Sonda mapující topografii vzorku Umožňuje měření i nevodivých vzorků Nevyužívá průchodu proudu Malé kompaktní zařízení Žádné speciální požadavky na umístění

  20. AFM Detekce vzdálenosti sondy od povrchu Meziatomární síly Deformace držáku sondy Optická detekce Softwarové zpracování dat Další zjišťované vlastnosti Tření Odezva na působící sílu (bodová spektroskopie) Magnetické vlastnosti Tepelná vodivost

  21. AFM

  22. AFM Hlavní prvek – raménko s hrotem Délka hrotu: několik µm Poloměr špičky: 10 – 50 µm Síly krátkého dosahu Několik nejbližších atomů hrotu a povrchu Teoretické rozlišení – jednotlivé atomy

  23. AFM Hroty: Křemík Nitrid křemíku Raménko: Důležitá pružnost Vlastnosti dle aplikace

  24. AFM

  25. AFM – síly působící na hrot Odpudivé síly Přitažlivé

  26. AFM – síly působící na hrot Celková síla může být odpudivá i přitažlivá Závislost na vzdálenosti hrotu a povrchu Síla způsobuje vychýlení hrotu z rovnovážné polohy Deformace držáku Detekce deformace laserovým paprskem Zpětná vazba – možnost reakce na deformace

  27. AFM Pohyb ve všech třech osách piezokeramickými prvky Vzorek připevněn na magnetický držák pod hlavou mikroskopu Magnetické vzorky – drží Nemagnetické vzorky – lepení oboustrannou páskou k podložce

  28. AFM – požadavky na vzorek Velikost musí odpovídat možnostem hlavy pro hrubý posuv ve vertikálním směru (cca 12 mm) Makroskopicky rovný nebo vypouklý vzorek Řádné upevnění vzorku práškové materiály – lepení, lisování měkké vzorky – biologické

  29. AFM – pracovní režimy Tři základní módy AFM Kontaktní Nekontaktní Poklepový

  30. AFM – kontaktní režim Malá tuhost držáku Přímá topografie povrchu na základě odpudivých sil Sonda smýkána po povrchu Lze detekovat i boční síly: Tření Různorodost materiálu Další vlivy Vyšší rozlišení – blíže k povrchu Vhodné pro tvrdé vzorky

  31. AFM – nekontaktní mód Vyšší tuhost držáku Režim přitažlivých sil dále od vzorku Mírně snížené rozlišení Hrot není v přímém kontaktu s povrchem Menší vrcholový úhel – vyšší rozlišení Měření měkkých a elastických vzorků

  32. AFM – poklepový mód Podobný předchozí Rozkmit tak velký, že dochází ke kontaktu s povrchem Povrch mapován ze změny rezonanční frekvence Vhodná pro vzorky: U nichž hrozí poškození třením či tažením Větší plochy s většími změnami v ose Z

  33. AFM - použití Testování struktur v oblasti mikro- a nanometrových rozměrů Polovodičové obvody Tyto struktury použitelné pro testy kvality zobrazení Kalibrační mřížky

  34. AFM – nevýhoda, další vývoj Malý rozměr skenované oblasti (100 x 100 µm) FM-AFM (1994) Rozkmit raménka Měřen fázový posuv kmitání Dosud nejvyšší rozlišení 77 pm (77.10-12m) Struktury uvnitř jednotlivých atomů

  35. AFM

  36. Skenovací sondová mikroskopie

  37. Skenovací sondová mikroskopie (SPM) Kombinace STM a AFM Studium povrchů a povrchových procesů Mechanické sondy Obory Chemie Fyzika Biologie Metrologie Nanotechnologie

  38. SPM a nanotechnologie Zobrazení a manipulace s atomy Struktury na atomární úrovni Manipulace: Kvalitní povrch Vakuum Dva způsoby STM hrot se nastaví nad přemisťovaný atom, přiloží se napětí, atom přejde na hrot, hrot se přemístí Jakýkoli hrot se umístí za přemisťovaný atom, atom je tlačen hrotem na zvolené místo

  39. Pro dnešek vše 

More Related