1 / 30

Diskrete Methoden Schedulingalgorithmen

Diskrete Methoden Schedulingalgorithmen. Prof. Dr. Th. Ottmann. Lernziele. Welche Bedeutung spielt Scheduling für eingebettete Systeme? Welche Arten von Schedulingproblemen gibt es?

jania
Download Presentation

Diskrete Methoden Schedulingalgorithmen

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Diskrete Methoden Schedulingalgorithmen Prof. Dr. Th. Ottmann IEMS-DM

  2. Lernziele • Welche Bedeutung spielt Scheduling für eingebettete Systeme? • Welche Arten von Schedulingproblemen gibt es? • Wie kann man auszuführende Aktivitäten (Tasks) effizient mit einem passenden Schedulingalgorithmus einplanen? Beispiele für Scheduling Verfahren: EDD (Earliest Due Date) EDF (Earliest Deadline First) IEMS-DM

  3. Bedeutung von Scheduling für eingebettete Systeme Eingebettete Systeme als Echtzeitsysteme: Häufig wird von eingebetteten Systemen verlangt, dass sie in fest definierten Zeitschranken arbeiten und mit der Außenwelt kommunizieren, sie sind sogenannte Echtzeit-Computersysteme. Beispiele für Anwendungen: Kontrolle von Produktionsprozessen, Verkehrsleitsysteme, Telekommunikation, Robotersteuerung, … In Echtzeit Systemen unterscheidet man: harte Tasks: Verpassen der Deadline kann katastrophale Folgen haben weiche Tasks: Einhalten der Deadline ist erwünscht, aber nicht zwingend IEMS-DM

  4. Bedeutung von Scheduling für eingebettete Systeme • Ausführungszeiten der Tasks müssen bekannt sein. • Problem: Ausführungszeiten schwierig zu bestimmen oder unbekannt • Lösung: Schätze sichere obere Schranken für das Ausführungsende (WCET) • Die jeweils anstehenden Aufgaben (Aktivitäten, Jobs, Tasks) müssen zeiteffizient mit einem Schedulingverfahren eingeplant werden. IEMS-DM

  5. Klassifkation u. Definitionen von Schedulingverfahren Periodische (vs. aperiodische) TasksTasks, die alle p Zeiteinheiten ausgeführt werden müssen. p ist die Periode. JedeAusführungeines periodischen Tasks heißtJob. Präemptives (vs. nicht-präemptives) Schedulingpräemptivbedeutet, dass ein Task unterbrochen werden kann und später fortgesetzt werden kann. Ermöglicht u.a. Reaktion auf externe Ereignisse. Dynamisches (vs. statisches) Scheduling Einplanung / Umplanung zur Laufzeit Harte (vs. weiche) ZeitbedingungenZeitschranken dürfen nicht überschritten werden Tasks-Beschreibungsliste (TDL)Ausführung durchDispatcherin zeitgesteuerten Betriebssystemen IEMS-DM

  6. Statisches vs. dynamisches Scheduling • Statisches (Offline-)Scheduling: Die Startzeiten aller Tasks werden vorab berechnet, in einer Tabelle niedergelegt (Task-Beschreibungs-Liste, TDL) und an einen zeitgesteuerten Dispatcher weitergeleitet. • Dynamisches (Online-)Scheduling: Entscheidungen über Prozessorzuweisungen (Scheduling) erfolgen zur Laufzeit. Die Entscheidungen werden aufgrund von Informationen über bisher angekommene Tasks getroffen Annahme: Ein-Prozessorsystem IEMS-DM

  7. Beispiel Taskbeschreibungsliste Taskbeschreibungslisten (TDL) werden vom Dispatcher interpretiert und die entsprechenden Tasks angestoßen und überwacht Der Dispatcher arbeitet taktgesteuert (synchron) Beispiel: IEMS-DM

  8. Beispiel eines Schedules von drei Tasks • Scheduling auf einem Prozessor J1 J2 J3 (t) t3 t4 t1 t2 IEMS-DM

  9. Beispiel eines präemptiven Schedules • Scheduling auf einem Prozessor J1 J2 J3 J2 J1 (t) t1 t2 t3 t4 t5 t6 IEMS-DM

  10. Zeitgesteuerte Systeme … pre-run-time scheduling is often the only practical means of providing predictability in a complex system. [Xu, Parnas]. Vorteil: Es ist einfach, zu prüfen, ob die Zeitbedingen erfüllt sind. Nachteil: Antwortzeiten auf seltene Ereignisse können lang sein. IEMS-DM

  11. Eine Menge von Tasks heißt schedulablebzgl. einer gegebenen Menge von Bedingungen, wenn für die Menge ein Schedule existiert, der die Bedingungen erfüllt. Exakte Tests sind häufig NP-hard. Sufficiency Test: Prüft hinreichende Bedingungen für die Existenz eines Schedules. Folge: Es können Schedules existieren, obwohl die Bedingungen nicht gelten. Necessary Test: Prüft notwendige Bedingungen für die Existenz eines Schedules. Wird meistens benutzt zum Nachweis, dass kein Schedule existiert. Schedulability necessary schedulable sufficient IEMS-DM

  12. Charakteristika von Tasks und Schedules TaskJi wird charakterisiert durch: • Ankunftszeit ai • Ausführungszeit Ci • Deadline di • Start Zeit si • Endzeit fi Optimierungsziele: Minimiere • Durchschnittliche Antwortzeit tr = 1/n ∑i=1n (fi – ai) • Maximale Verspätung (maximum lateness): Lmax = maxi (fi – di) IEMS-DM

  13. T1 T2 Max. lateness t Maximale Verspätung Def.: Maximale Verspätung (Maximum lateness) = maxall tasks(completion time – deadline) Maximale Verspätung ist < 0, wenn alle Tasks vor ihren jeweiligen Deadlines beendet sind. IEMS-DM

  14. Schedulingverfahren von Jackson Scheduling auf einem Prozessor. Alle n Tasks sind unabhängig voneinander und können zur gleichen Zeit begonnen werden (zum Zeitpunkt 0). • EDD: Earliest Due Date (Jackson, 1955) Jeder Algorithmus, der die Tasks in der Reihenfolge nicht abnehmender Deadlines ausführt, ist optimal bzgl. der Minimierung der maximalen Verspätung Bew. (Butazzo, 2002): Sei A ein Algorithmus, der verschieden von EDD ist. Dann gibt es zwei Tasks Ja und Jb in dem von A erzeugten Schedule σ, so dass in σJb unmittelbar vor Ja steht, aber da db ist: Jb Ja da db IEMS-DM

  15. Optimalität von EDD • Sei  ein Schedule, der von einem Algorithmus A erzeugt wird. • Wenn A  EDD   Ja, Jb, da≤ db, Jb geht Ja in  unmittelbar voraus. • Die maximale Verspätung für Ja und Jb in  ist Lmax(a,b) = fa-da  Jb Ja da db IEMS-DM

  16. Jackson´s Algorithmus (1) • Idee: Vertausche in σJa und Jb und zeige, dass die maximale Verspätung höchstens abnimmt. • Fall 1: L´a = f´a – d´a ≥ f´b – d´b = L´b  L'max(a,b) = f'a – da < fa – da =Lmax(a,b) weil Ja im Schedule ´ eher startet als in . σ Jb Ja Ja Jb σ´ fa f´a fb da db IEMS-DM

  17. Jackson´s Algorithmus (2) • Idee: Vertausche in σJa und Jb und zeige, dass die maximale Verspätung höchstens abnimmt. • Fall 2: L´a = f´a – d´af´b – d´b= L´b • L'max(a,b) = f'b – db = fa – db ≤ fa – da = Lmax(a,b), weil fa=f'b und da≤ db Also ist in jedem FallL'max(a,b) ≤ Lmax(a,b) σ Jb Ja Ja Jb σ´ f´a fb fa da db IEMS-DM

  18. EDD ist optimal • Jeder Schedule  mit Verspätung L kann transformiert werden in einen EDD Schedule n mit Verspätung Ln≤ L; dieser muss also minimale Verspätung haben. • EDD ist optimal (q.e.d.) IEMS-DM

  19. Jackson´s Algorithmus (3) EDD-Algorithmus: Sortiere die n Tasks J1, …, Jn nach aufsteigenden Deadlines d1, …, dn und führe sie in dieser Reihenfolge aus! Ausführungszeit (für Berechnung eines optimalen Schedules): O(n log n) IEMS-DM

  20. Schedulingverfahren von Horn (EDF) Scheduling auf einem Prozessor. Tasks können zu verschiedenen Zeitpunkten ankommen (ausführungsbereit sein) und unterbrochen ausgeführt werden (preemption erlaubt). • EDF: Earliest Deadline First (Horn, 1975)Jeder Algorithmus, der zu jedem Zeitpunkt diejenige ausführungsbereite Task mit der frühesten absoluten Deadline ausführt, ist optimal bzgl. der Minimierung der maximalen Verspätung. IEMS-DM

  21. Schedulingverfahren von Horn (EDF) • Jede ankommende ausführbare Task wird entsprechend ihrer absoluten Deadline in die Warteschleife der ausführbaren Tasks eingereiht • Wird eine neu ankommende Task als erstes Element in die Warteschlange eingefügt, muss gerade ausgeführte Task unterbrochen werden • Effizienz von EDF hängt von Priority Queue Implementation ab! Sorted queue Executing task IEMS-DM

  22. Earliest Deadline First (EDF): Beispiel spätere Deadline  no preemption frühere Deadline preemption IEMS-DM

  23. Optimalität von of EDF (1) Zu zeigen: EDF minimiert die maximale Verspätung. Beweis (Buttazzo, 2002): • Sei  ein Schedule, der von einem Verfahren A erzeugt wird. • Sei EDF ein vonEDF erzeugter Schedule. • Präemption sei erlaubt: Tasks werden in disjunkten Zeitintervallen ausgeführt •  wird in Zeitscheiben der Einheitslänge 1 unterteilt • Zeitscheiben werden mit [t, t+1) bezeichnet • Sei (t) die in [t, t+1) ausgeführte Tasks. • Sei E(t) die Tasks, die zum Zeitpunkt t die frühestedeadline hat. • Sei tE(t) die Zeit (t) zu der die nächste Zeitscheibe der Tasks E(t) im Schedule ausgeführt wird. IEMS-DM

  24. t t t t t t t t Optimalität von EDF (2) • Wenn   EDF, dann gibt es eine Zeit t: (t)  E(t) • Idee: vertausche (t) und E(t) ohne die max. lateness zu vergrößern (t)=4; (tE)=2 T1 T2 T3 T4 0 2 4 6 8 10 12 14 16 (t)=2; (tE)=4 T1 T2 T3 T4 0 2 4 6 8 10 12 14 16 Wenn (t) zur Zeit t=0 startet und D=maxi{di }, dann kann EDF aus  mit höchstens D Vertauschungen erzeugt werden. IEMS-DM [Buttazzo, 2002]

  25. Optimalität von EDF (3) Algorithmus interchange: { for (t=0 toD -1) { if ((t)  E(t)) { (tE) = (t); (t) = E(t); }}} Mit Hilfe eines analogen Arguments wie beim Jackson Algorithmus kann man zeigen, dass die maximale Verspätung nicht zunehmen kann; also ist EDF optimal. • Konserviert interchange Schedulability? • Task E(t) wird vorgezogen: Deadline im neuen Schedule wird eingehalten, wenn Deadline in  eingehalten wird. • Task (t) wird verzögert: Wenn (t) ausführbar ist, dann ist (tE+1) ≤ dE, wobei dE die früheste Deadline ist. Weil dE≤ di für jedes i, folgt tE+1 ≤ di, das garantiert Schedulability der verzögerten Task (Zeitscheibe). q.e.d. [Buttazzo, 2002] IEMS-DM

  26. Scheduling von abhängigen Tasks Task Graph und ein möglicher Schedule Schedule kann in Tabelle gespeichert werden. IEMS-DM

  27. Gleichzeitig ankommende Tasks: LDF • The Latest Deadline First (LDF) Algorithm [Lawler, 1973]: LDF liest den Task Graph und legt von allen Tasks ohne Nachfolger jeweils den mit spätester Deadline in einem Stapel ab. Das wird für alle verbleibenden Tasks wiederholt. • Zur Laufzeit werden die Tasks in der so erzeugten Reihenfolge ausgeführt. • LDF ist nicht-präemptiv und is optimal für Ein-Prozessorsysteme. Wenn es nur eine globale Deadline gibt, führt LDF eine topologische Sortierung der Tasks durch. IEMS-DM

  28. Asynchron ankommende Tasks: mEDF • Dieser Fall kann mit einer Modifikation des EDF Algorithmus behandelt werden: mEDF-Algorithmus • Idee: Verwandle das Scheduling Problem für die Menge abhängiger Tasks in ein Scheduling Problem für unabhängige Tasks mit geeignet gewählten Zeitparametern [Chetto90]. • Dieser Algorithmus ist optimal für Ein-Prozessor Systeme. IEMS-DM

  29. Zusammenfassung • Worst case execution times (WCET) • Definition von Begriffen im Scheduling: • Harte vs. weiche Deadlines • Statisches vs. dynamisches Scheduling • Schedulability • Scheduling Verfahren • Aperiodische Tasks • ohne Abhängigkeiten • alle Tasks gleichzeitig verfügbar (EDD) • asynchrone Ankunftszeiten (EDF) • Abhängigkeiten (Precedences) • alle Tasks gleichzeitig verfügbar ( LDF) • asynchrone Ankunftszeiten ( mEDF) IEMS-DM

  30. Literatur • P. Marwedel: Eingebettete Systeme, Springer-Verlag, Berlin u.a., 2007 • G.C. Buttazzo: Hard Real-Time Computing Systems, Predictable Scheduling Algorithms and Applications, Kluwer Academic Publishers, Boston u.a., 2002 • P. Brucker: Scheduling Algorithms, 5th ed., Springer-Verlag, Berlin u.a., 2007 IEMS-DM

More Related