1 / 30

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. Charge components in the BJT. From Getreau, Modeling the Bipolar Transistor , Tektronix, Inc. Gummel-Poon Static npn Circuit Model. C. R C.

jatin
Download Presentation

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semiconductor Device Modeling and CharacterizationEE5342, Lecture 15 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. Charge componentsin the BJT From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc.

  3. Gummel-Poon Staticnpn Circuit Model C RC IBR B RBB ILC ICC -IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B’ IBF ILE RE E

  4. Gummel-Poon Staticnpn Circuit Model C RC IBR B RBB ILC ICC -IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B’ IBF ILE RE E

  5. Gummel-Poon Static Par. NAME PARAMETER UNIT DEFAULT IS transport saturation current A 1.0e-16 BF ideal maximum forward beta - 100 NF forward current emission coef. - 1.0 VAF forward Early voltage V infinite ISE B-E leakage saturation current A 0 NE B-E leakage emission coefficient - 1.5 BR ideal maximum reverse beta - 1 NR reverse current emission coefficient - 1 VAR reverse Early voltage V infinite ISC B-C leakage saturation current A 0 NC B-C leakage emission coefficient - 2 EG energy gap (IS dep on T) eV 1.11 XTI temperature exponent for IS - 3

  6. Gummel-Poon StaticModel Parameters NAME PARAMETER UNIT DEFAULT IKF corner for forward beta A infinite high current roll-off IKR corner for reverse beta A infinite high current roll-off RB zero bias base resistance W 0 IRB current where base resistance A infinite falls halfway to its min value RBM minimum base resistance W RB at high currents RE emitter resistance W 0 RC collector resistance W 0 TNOM parameter - meas. temperature °C 27

  7. IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR ) { + [ + (BFIBF/IKF + BRIBR/IKR)]1/2} Gummel Poon npnModel Equations

  8. Gummel PoonBase Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) [1+144iB/(p2IRB)]1/2-1 z = (24/p2)(iB/IRB)1/2 Regarding (i) RBB and (x) RTh on slide 22, RB = RBM + DR/(1+iB/IRB)aRB ,DR = RB - RBM

  9. iC RC vBC - iB + + RB vBE - vBEx RE BJT CharacterizationForward Gummel vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexpf(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexpf(vBE/NFVt)/QB

  10. iC and iB (A) vs. vBE (V) N = 1  1/slope = 59.5 mV/dec N = 2  1/slope = 119 mV/dec Ideal F-G Data

  11. RC vBCx vBC - iB + + RB vBE - RE iE BJT CharacterizationReverse Gummel vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = ISexpf(vBC/NRVt)/BR + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt)/QB

  12. iE and iB (A) vs. vBE (V) N = 1  1/slope = 59.5 mV/dec N = 2  1/slope = 119 mV/dec Ideal R-G Data Ie

  13. The base current must flow lateral to the wafer surface Assume E & C cur-rents perpendicular Each region of the base adds a term of lateral res. vBE diminishes as current flows coll. base & emitter contact regions reg 1 reg 2 reg 3 reg 4 emitter base collector Distributed resis-tance in a planar BJT

  14. Distributed device is repr. by Q1, Q2, … Qn Area of Q is same as the total area of the distributed device. Both devices have the same vCE = VCC Both sources have same current iB1 = iB. The effective value of the 2-dim. base resistance is Rbb’(iB) = DV/iB = RBBTh  DV  = Simulation of 2-dim. current flow

  15. Analytical solutionfor distributed Rbb • Analytical solution and SPICE simulation both fit RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB

  16. Distributed baseresistance function Normalized base resis-tance vs. current. (i) RBB/RBmax, (ii) RBBSPICE/RBmax, after fitting RBB and RBBSPICE to RBBTh (x) RBBTh/RBmax. FromAn Accurate Mathematical Model for the Intrinsic Base Resistance of Bipolar Transistors, by Ciubotaru and Carter, Sol.-St.Electr. 41, pp. 655-658, 1997. RBBTh = RBM + DR/(1+iB/IRB)aRB (DR = RB - RBM )

  17. Gummel PoonBase Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) [1+144iB/(p2IRB)]1/2-1 z = (24/p2)(iB/IRB)1/2 Regarding (i) RBB and (x) RTh on previous slide, RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB

  18. Gummel-Poon Staticnpn Circuit Model C RC IBR B RBB ILC ICC -IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B’ IBF ILE RE E

  19. IBF = IS expf(vBE/NFVt)/BF ILE = ISE expf(vBE/NEVt) IBR = IS expf(vBC/NRVt)/BR ILC = ISC expf(vBC/NCVt) ICC -IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB QB= {+ [+ (BFIBF/IKF + BRIBR/IKR)]1/2}  (1 - vBC/VAF - vBE/VAR )-1 Gummel Poon npnModel Equations

  20. Reverse Active Operation iE iB vEC vBC 0.2 < vEC < 5.0 0.7 < vBC < 0.9 VAR ParameterExtraction (rEarly) iE = -IEC= (IS/QB)exp(vBC/NRVt), where ICC= 0, and QB-1= (1-vBC/VAF-vBE/VAR ) {IKR terms}-1, so since vBE = vBC - vEC, VAR = iE/[iE/vBE]vBC

  21. Reverse EarlyData for VAR • At a particular data point, an effective VAR value can be calculated VAReff = iE/[iE/vBE]vBC • The most accurate is at vBE = 0 (why?) vBC = 0.85 V vBC = 0.75 V iE(A) vs. vEC (V)

  22. VAF ParameterExtraction (fEarly) Forward Active Operation iC = ICC= (IS/QB)exp(vBE/NFVt), where ICE= 0, and QB-1= (1-vBC/VAF-vBE/VAR ) {IKF terms}-1, so since vBC = vBE - vCE, VAF = iC/[iC/vBC]vBE iC iB vCE vBE 0.2 < vCE < 5.0 0.7 < vBE < 0.9

  23. Forward EarlyData for VAF • At a particular data point, an effective VAF value can be calculated VAFeff = iC/[iC/vBC]vBE • The most accurate is at vBC = 0 (why?) vBE = 0.85 V vBE = 0.75 V iC(A) vs. vCE (V)

  24. iC RC vBC - iB + + RB vBE - vBEx RE BJT CharacterizationForward Gummel vBCx= 0 = vBC+ iBRB- iCRC vBEx = vBE+iBRB+(iB+iC)RE iB = IBF + ILE = ISexp(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ) {IKF terms}-1

  25. Forward GummelData Sensitivities a Region a - IKFIS, RB, RE, NF, VAR Region b - IS, NF, VAR, RB, RE Region c - IS/BF, NF, RB, RE Region d - IS/BF, NF Region e - ISE, NE vBCx = 0 c iC b d iB e iC(A),iB(A) vs. vBE(V)

  26. Region (a) fgData Sensitivities Region a - IKFIS, RB, RE, NF, VAR iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms}-1

  27. Region (b) fgData Sensitivities Region b - IS, NF, VAR, RB, RE iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms}-1

  28. Region (c) fgData Sensitivities Region c - IS/BF, NF, RB, RE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt)

  29. Region (d) fgData Sensitivities Region d - IS/BF, NF iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt)

  30. Region (e) fgData Sensitivities Region e - ISE, NE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt)

More Related