1 / 36

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. Gummel-Poon Static npn Circuit Model. C. RC. Intrinsic Transistor. IBR. B. RBB. ILC. I CC - I EC = IS ( exp(v BE /NFV t ) -

tallys
Download Presentation

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semiconductor Device Modeling and CharacterizationEE5342, Lecture 16 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. Gummel-Poon Staticnpn Circuit Model C RC Intrinsic Transistor IBR B RBB ILC ICC-IEC= IS(exp(vBE/NFVt) - exp(vBC/NRVt)/QB B’ IBF ILE RE E

  3. IBF = IS expf(vBE/NFVt)/BF ILE = ISE expf(vBE/NEVt) IBR = IS expf(vBC/NRVt)/BR ILC = ISC expf(vBC/NCVt) ICC -IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB QB= {+ [+ (BFIBF/IKF + BRIBR/IKR)]1/2}  (1 - vBC/VAF - vBE/VAR )-1 Gummel Poon npnModel Equations

  4. VAF ParameterExtraction (fEarly) Forward Active Operation iC = ICC= (IS/QB)exp(vBE/NFVt), where ICE= 0, and QB-1= (1-vBC/VAF-vBE/VAR )* {IKF terms}-1, so since vBC = vBE - vCE, VAF = iC/[iC/vBC]vBE iC iB vCE vBE 0.2 < vCE < 5.0 0.7 < vBE < 0.9

  5. Forward EarlyData for VAF • At a particular data point, an effective VAF value can be calculated VAFeff = iC/[iC/vBC]vBE • The most accurate is at vBC = 0 (why?) vBE = 0.85 V vBE = 0.75 V iC(A) vs. vCE (V)

  6. Forward EarlyVAf extraction VAFeff = iC/[iC/vBC]vBE • VAF was set at 100V for this data • When vBC = 0 vBE=0.75VAR=101.2 vBE=0.85VAR=101.0 vBE = 0.75 V vBE = 0.85 V VAFeff(V) vs. vCE (V)

  7. Reverse Active Operation iE iB vEC vBC 0.2 < vEC < 5.0 0.7 < vBC < 0.9 VAR ParameterExtraction (rEarly) iE = -IEC= (IS/QB)exp(vBC/NRVt), where ICC= 0, and QB-1= (1-vBC/VAF-vBE/VAR ) {IKR terms}-1, so since vBE = vBC - vEC, VAR = iE/[iE/vBE]vBC

  8. Reverse EarlyData for VAR • At a particular data point, an effective VAR value can be calculated VAReff = iE/[iE/vBE]vBC • The most accurate is at vBE = 0 (why?) vBC = 0.85 V vBC = 0.75 V iE(A) vs. vEC (V)

  9. Reverse EarlyVAR extraction VAReff = iE/[iE/vBE]vBC • VAR was set at 200V for this data • When vBE = 0 vBC=0.75VAR=200.5 vBC=0.85VAR=200.2 vBC = 0.75 V vBC = 0.85 V VAReff(V) vs. vEC (V)

  10. iC RC vBC - iB + + RB vBE - vBEx RE BJT CharacterizationForward Gummel vBCx= 0 = vBC+ iBRB- iCRC vBEx = vBE+iBRB+(iB+iC)RE iB = IBF + ILE = ISexp(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ) {IKF terms}-1

  11. Sample fg data forparameter extraction • IS = 10f • NF = 1 • BF = 100 • Ise = 10E-14 • Ne = 2 • Ikf = .1m • Var = 200 • Re = 1 • Rb = 100 iC data iB data iC, iB vs. vBEext

  12. Definitions ofNeff and ISeff • In a region where iC or iB is approxi-mately a single exponential term, then iC or iB ~ ISeffexp (vBEext /(NFeffVt) where Neff={dvBEext/d[ln(i)]}/Vt, and ISeff = exp[ln(i) - vBEext/(NeffVt)]

  13. Forward GummelData Sensitivities a Region a - IKFIS, RB, RE, NF, VAR Region b - IS, NF, VAR, RB, RE Region c - IS/BF, NF, RB, RE Region d - IS/BF, NF Region e - ISE, NE vBCx = 0 c iC b d iB e iC(A),iB(A) vs. vBE(V)

  14. Region (b) fgData Sensitivities Region b - IS, NF, VAR, RB, RE iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms}-1

  15. Region (e) fgData Sensitivities Region e - ISE, NE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt)

  16. Simple extractionof IS, ISE from data Data set used • IS = 10f • ISE = 10E-14 Flat ISeff for iC data = 9.99E-15 for 0.230 < vD < 0.255 Max ISeff value for iB data is 8.94E-14 for vD = 0.180 iC data iB data ISeff vs. vBEext

  17. Simple extraction of NF, NE from fg data iB data Data set used NF=1 NE=2 Flat Neff region from iC data = 1.00 for 0.195 < vD < 0.390 Max Neff value from iB data is 1.881 for 0.180 < vD < 0.181 iC data NEeff vs. vBEext

  18. Region (d) fgData Sensitivities Region d - IS/BF, NF iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt)

  19. Simple extractionof BF from data • Data set used BF = 100 • Extraction gives max iC/iB = 92 for 0.50 V < vD < 0.51 V 2.42A< iD < 3.53A • Minimum value of Neff =1 for slightly lower vD and iD iC/iB vs. iC

  20. Region (a) fgData Sensitivities Region a - IKFIS, RB, RE, NF, VAR iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms}-1

  21. Region (c) fgData Sensitivities Region c - IS/BF, NF, RB, RE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt)

  22. RC vBCx vBC - iB + + RB vBE - RE iE BJT CharacterizationReverse Gummel vBEx= 0 = vBE+ iBRB- iERE vBCx = vBC+iBRB+(iB+iE)RC iB = IBR + ILC = (IS/BR)expf(vBC/NRVt) + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) {IKR terms}-1

  23. Sample rg data forparameter extraction • IS=10f • Nr=1 • Br=2 • Isc=10p • Nc=2 • Ikr=.1m • Vaf=100 • Rc=5 • Rb=100 iB data iE data iE, iB vs. vBCext

  24. Definitions ofNeff and ISeff • In a region where iC or iB is approxi-mately a single exponential term, then iC or iB ~ ISeffexp (vBCext /(NReffVt) where Neff={dvBCext/d[ln(i)]}/Vt, and ISeff = exp[ln(i) - vBCext/(NeffVt)]

  25. Reverse GummelData Sensitivities c Region a - IKRIS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC vBCx = 0 a d e b iB iE iE(A),iB(A) vs. vBC(V)

  26. Region (d) rgData Sensitivities Region d - BR, IS, NR iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt)

  27. Simple extractionof BR from data • Data set used Br = 2 • Extraction gives max iE/iB = 1.7 for 0.48 V < vBC < 0.55V 1.13A< iE < 14.4A • Minimum value of Neff =1 for same range iE/iB vs. iE

  28. Region (b) rgData Sensitivities Region b - IS, NR, VAF, RB, RC iE = bRIBR/QB = ISexp(vBC/NRVt) (1-vBC/VAF-vBE/VAR ){IKR terms}-1

  29. Region (e) rgData Sensitivities Region e - ISC, NC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt)

  30. Simple extractionof IS, ISC from data Data set used • IS = 10fA • ISC = 10pA Min ISeff for iE data = 9.96E-15 for vBC = 0.200 Max ISeff value for iB data is 8.44E-12 for vBC = 0.200 iB data iE data ISeff vs. vBCext

  31. Simple extraction of NR, NC from rg data Data set used Nr = 1 Nc = 2 Flat Neff region from iE data = 1.00 for 0.195 < vBC < 0.375 Max Neff value from iB data is 1.914 for 0.195 < vBC < 0.205 iB data iE data NEeff vs. vBCext

  32. Region (c) rgData Sensitivities Region c - BR, IS, NR, RB, RC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt)

  33. Region (a) rgData Sensitivities Region a - IKRIS, RB, RC, NR, VAF iE=bRIBR/QB~[ISIKR]1/2exp(vBC/NRVt) (1-vBC/VAF-vBE/VAR )

  34. RE-flyback dataextraction of RE REvCE/iB (from IC-CAP Modeling Reference, p. 6-37) RBM(vBE - vCE)/iB (adapted by RLC from IC-CAP Modeling Reference, p. 6-39) o.c. Qintr vCE RBB B’ vBE E’ iB RE

  35. Extraction of REfrom refly data RE vCE/iB • Slope gives RE  7.1 Ohm • Model data assumed RE = 1 Ohm

  36. Extraction of RBMfrom refly data RBM (vBE - vCE)/iB • Slope gives RBM  108 Ohm • Model data assumed RB = RBM = 100 Ohm

More Related