1 / 16

Semiconductor Device Modeling and Characterization EE5342, Lecture 10 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 10 -Sp 2002. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. SPICE Diode Static Model. V ext = v D + i D *RS. Dinj IS N ~ 1 IKF, VKF, N ~ 1 Drec ISR NR ~ 2. i D *RS. V d.

qamar
Download Presentation

Semiconductor Device Modeling and Characterization EE5342, Lecture 10 -Sp 2002

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semiconductor Device Modeling and CharacterizationEE5342, Lecture 10 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. SPICE DiodeStatic Model Vext = vD + iD*RS • Dinj • IS • N ~ 1 • IKF, VKF, N ~ 1 • Drec • ISR • NR ~ 2 iD*RS Vd

  3. SPICE DiodeStatic Model Eqns. Id = area(Ifwd - Irev) Ifwd = InrmKinj + IrecKgen Inrm = IS{exp [Vd/(NVt)] - 1} Kinj = high-injection factorFor IKF > 0, Kinj = IKF/[IKF+Inrm)]1/2 otherwise, Kinj = 1 Irec = ISR{exp [Vd/(NR·Vt)] - 1} Kgen = ((1 - Vd/VJ)2 + 0.005)M/2

  4. Interpreting a plotof log(iD) vs. Vd In the region where Irec < Inrm < IKF, and iD*RS << Vd. iD ~ Inrm = IS(exp (Vd/(NVt)) - 1) For N = 1 and Vt = 25.852 mV, the slope of the plot of log(iD) vs. Vd is evaluated as {dlog(iD)/dVd} = log (e)/(NVt) = 16.799 decades/V = 1decade/59.526mV

  5. Static Model Eqns.Parameter Extraction In the region where Irec < Inrm < IKF, and iD*RS << Vd. iD ~ Inrm = IS(exp (Vd/(NVt)) - 1) {diD/dVd}/iD = d[ln(iD)]/dVd = 1/(NVt) so N ~ {dVd/d[ln(iD)]}/Vt = Neff, and ln(IS) ~ ln(iD) - Vd/(NVt) =ln(ISeff). Note: iD, Vt, etc., are normalized to 1A, 1V, resp.

  6. Static Model Eqns.Parameter Extraction In the region where Irec > Inrm, and iD*RS << Vd. iD ~ Irec = ISR(exp (Vd/(NRVt)) - 1) {diD/dVd}/iD = d[ln(iD)]/dVd ~ 1/(NRVt) so NR ~ {dVd/d[ln(iD)]}/Vt = Neff, & ln(ISR) ~ln(iD) -Vd/(NRVt)= ln(ISReff). Note: iD, Vt, etc., are normalized to 1A, 1V, resp.

  7. Static Model Eqns.Parameter Extraction In the region where IKF > Inrm, and iD*RS << Vd. iD ~ [ISIKF]1/2(exp (Vd/(2NVt)) - 1) {diD/dVd}/iD = d[ln(iD)]/dVd ~ (2NVt)-1 so 2N ~ {dVd/d[ln(iD)]}/Vt = 2Neff, and ln(iD) -Vd/(NRVt)=ln(ISIKFeff). Note: iD, Vt, etc., are normalized to 1A, 1V, resp.

  8. Static Model Eqns.Parameter Extraction In the region where iD*RS >> Vd. diD/Vd ~ 1/RSeff dVd/diD = RSeff

  9. Getting Diode Data forParameter Extraction • The model used .model Dbreak D( Is=1e-13 N=1 Rs=.5 Ikf=5m Isr=.11n Nr=2) • Analysis has V1 swept, and IPRINT has V1 swept • iD, Vd data in Output

  10. diD/dVd - Numerical Differentiation

  11. dln(iD)/dVd - Numerical Differentiation

  12. Diode Par.Extraction 1/Reff iD ISeff

  13. Results ofParameter Extraction • At Vd = 0.2 V, NReff = 1.97, ISReff = 8.99E-11 A. • At Vd = 0.515 V, Neff = 1.01, ISeff = 1.35 E-13 A. • At Vd = 0.9 V, RSeff = 0.725 Ohm • Compare to .model Dbreak D( Is=1e-13 N=1 Rs=.5 Ikf=5m Isr=.11n Nr=2)

  14. Hints for RS and NFparameter extraction In the region where vD > VKF. Defining vD = vDext - iD*RS and IHLI = [ISIKF]1/2. iD = IHLIexp (vD/2NVt) + ISRexp (vD/NRVt) diD/diD = 1  (iD/2NVt)(dvDext/diD - RS) + … Thus, for vD > VKF (highest voltages only) • plot iD-1vs. (dvDext/diD) to get a line with • slope = (2NVt)-1, intercept = - RS/(2NVt)

  15. Application of RS tolower current data In the region where vD < VKF. We still have vD = vDext - iD*RS and since. iD = ISexp (vD/NVt) + ISRexp (vD/NRVt) • Try applying the derivatives for methods described to the variables iD and vD (using RS and vDext). • You also might try comparing t0he N value from the regular N extraction procedure to the value from the previous slide.

  16. Project 2 • A set of iD vs. Vd (> 0) data will be given. • Develop a method (more accurate than in this presentation) for extracting the parameters IS, N, ISR, NR, IKF and RS • Document your extraction methods and the values you have extracted. • Compare a SPICE diode simulation obtained with the extracted values to the data given originally. • Calculate a net error of your simulation relative to the data originally given

More Related