150 likes | 369 Views
Matrik Lanjut. PENJUMLAHAN MATRIKS. Apabila A dan B merupakan dua matriks yang ukurannya sama, maka hasil penjumlahan (A + B) adalah matriks yang diperoleh dengan menambahkan bersama-sama entri yang seletak/bersesuaian dalam kedua matriks tersebut.
E N D
PENJUMLAHAN MATRIKS • Apabila A dan B merupakan dua matriks yang ukurannya sama, maka hasil penjumlahan (A + B) adalah matriks yang diperoleh dengan menambahkan bersama-sama entri yang seletak/bersesuaian dalam kedua matriks tersebut. • Matriks-matriks yang ordo/ukurannya berbeda tidak dapat ditambahkan. • dan 2
PENJUMLAHAN MATRIKS • Contoh Soal 3
PENGURANGAN MATRIKS • A dan B adalah suatu dua matriks yang ukurannya sama, maka A-B adalah matriks yang diperoleh dengan mengurangkan bersama-sama entri yang seletak/bersesuaian dalam kedua matriks tersebut. • Matriks-matriks yang ordo/ukurannya berbeda tidak dapat dikurangkan. • dan 4
PENGURANGAN MATRIKS • Contoh : 5
PERKALIAN MATRIKS • Perkalian matriks dengan matriks pada umumnya tidak bersifat komutatif. • Syarat perkalian adalah jumlah banyaknya kolom pertama matriks sama dengan jumlah banyaknya baris matriks kedua. • Jika matriks A berukuran mxn dan matriks B berukurannxp maka hasil dari perkalian A*B adalah suatu matriks C=(cij ) berukuran mxp dimana 6
PERKALIAN MATRIKS • Contoh : 7
a11 a12 .... a1n a22 a22 ....a2n : : : : am1 am2 ....amn [AT] ik = [aik] = Contoh : -4 0 6 1 3 2 -4 6 3 0 1 2 A = , maka AT = Transpose Matrik Transpose AT dari matrik m x n A = [ aik ] adalah matrik n x m yang diperoleh dari pertukaran baris dan kolom [AT] ik = [aik]
Adalah matrik simetrik 3 x 3 5 3 2 A = 3 4 -3 2 -3 1 Matrik Simetrik adalah matrik square A dimana akj = ajk untuk seluruh j dan k. atau dengan kata lain : AT = A
Sifat – sifat Transpose Matriks • ( AT )T = A • ( A + B )T = AT + BT • ( A – B )T = AT - BT • ( AB )T = BT AT
INVERS MATRIKS • Matriks invers dari suatu matriks A adalah matriks B yang apabila dikalikan dengan matriks A memberikan satuan I • AB = I • Notasi matriks invers : • Sebuah matriks yang dikalikan matriks inversenya akan menghasilkan matrik satuan • Jika • Maka 11
Contoh Suatu matriks dikatakan mempunyai invers jika nilai determinan matriks tidak nol Determinan matriks A ditulis : │A│ 2 3 A = 4 5 Invers A ditulis : A-1 Dengan Det.A = = 2.5-3.4 = -2 1 5 -3 -5/2 3/2 A -1 = = 2.5 – 3.4 -4 2 2 -1 • 3 • 4 5
Daftar Pustaka • Advanced Engineering Mathematic, chapter 8 • Anton, Howard. Dasar-dasar Aljabar Linear Jilid 1 Edisi 7. 2000. Penerbit Interaksara. Jakarta • Anton, Howard. Dasar-dasar Aljabar Linear Jilid 2 Edisi 7. 2000. Penerbit Interaksara. Jakarta • Noor Ifada. Bahan Kuliah Aljabar Linear