1 / 18

Metode N on- parametrik utk Data Survival

Metode N on- parametrik utk Data Survival. Taksiran Tabel Masa Hidup ( Life Table ) utk Fungsi Ketahanan. Untuk melihat ketahanan hidup dari sekumpulan individu yg merupakan sampel acak dr populasi . Perluasan dari frekuensi relatif utk data tersensor .

kellsie
Download Presentation

Metode N on- parametrik utk Data Survival

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Metode Non-parametrikutk Data Survival TaksiranTabelMasaHidup (Life Table) utkFungsiKetahanan • Untukmelihatketahananhidupdarisekumpulanindividuygmerupakansampelacakdrpopulasi. • Perluasandarifrekuensirelatifutk data tersensor. • Misal data waktuketahanankitabuatmenjadi k buah interval yakniI1, ..., Ik. I1 I2 Ij Ik ( ( ( ( ] ] ] ] 0 1 2 j-1 j k-1 k

  2. ni = #bertahanhidupmelewatiawal interval Ii di = #matipada interval Ii wi = #tersensorpada interval Ii pi = P(bertahanmelewati Ii | hiduppadaawal Ii) qi = 1  pi S(k) = P(T > k) I1 I2 Ii Ik ( ( ( ( ] ] ] ] 0 1 2 i-1 i k-1 k

  3. Taksiran Kaplan-Meier utkFungsiKetahanan • Misaladanindividudgnwaktuketahananhidupnyat1, t2, tndanadarindividu yang mati, dimanar ≤ n. Waktumeninggalnyadiurutkan • Misalnj = #individuygmasihhidupsesaatsebelumt(j)termasukygmeninggal pd t(j), j = 1,2,…,r • dj = #individuygmeninggal pd t(j) • P(mati pd [t(j)-, t(j)]) = dj/nj, dimanalebarselangwaktuygkecil • P(bertahanmelewati [t(j)-, t(j)]) = (nj -dj)/nj

  4. Utkt(k) ≤ t < t(k+1), dimanak = 1,2,…, r, taksiran Kaplan-Meier fungsiketahanan • dgnutkt < t(1)dant(r+1) = ∞ • Contoh: Data ttgwaktusampaiberhentinyapemakaian IUD dari 18 wanita (dlmminggu).

  5. Taksiran Kaplan-Meier drfungsiKetahanan

  6. SelangKepercayaanbagiNilaidariFungsiKetahanan • Selangkepercayaanadalahsuatuselang yang sedemikiansehinggaadapeluangtertentubhwnilaifungsiketahananygsebenarnyaterkandungdalamselangini. • Dgnasumsibahwaberdistribusi N(S(t),var{ }), dimana • Selangkepercayaan 100(1-)% bagiS(t), utkttertentuadalah

  7. MenaksirFungsiKetahanandengan SAS • data IUD; • input disctime status @@; • CARDS; • 10 1 13 0 18 0 19 1 23 0 30 1 36 1 38 0 54 0 • 56 0 59 1 75 1 93 1 97 1 104 0 107 1 107 0 107 0 • ; • PROCLIFETEST plots=(s); • time disctime*status(0); • RUN;

  8. Standard Number Number disctime Survival Failure Error Failed Left   0.000 1.0000 0 0 0 18 10.000 0.9444 0.0556 0.0540 1 17 13.000* . . . 1 16 18.000* . . . 1 15 19.000 0.8815 0.1185 0.0790 2 14 23.000* . . . 2 13 30.000 0.8137 0.1863 0.0978 3 12 36.000 0.7459 0.2541 0.1107 4 11 38.000* . . . 4 10 54.000* . . . 4 9 56.000* . . . 4 8 59.000 0.6526 0.3474 0.1303 5 7 75.000 0.5594 0.4406 0.1412 6 6 93.000 0.4662 0.5338 0.1452 7 5 97.000 0.3729 0.6271 0.1430 8 4 104.000* . . . 8 3 107.000 0.2486 0.7514 0.1392 9 2 107.000* . . . 9 1 107.000* . . . 9 0

  9. MenaksirFungsiKetahanandenganSplus/R • disctime <- c(10,13,18,19,23,30,36,38,54,56,59,75,93, • 97,104,107,107,107) • status <- c(1,0,0,1,0,1,1,0,0,0,1,1,1,1,0,1,0,0) • library(survival) • estS <- survfit(Surv(iud,status)~1,conf.type="plain") • plot(estS,conf.int=T,xlab="Discontinuation time (in weeks)", ylab="Estimated survivor function")

  10. time n.riskn.event survival std.err lower 95% CI upper 95% CI 10 18 1 0.944 0.0540 0.8386 1.000 19 15 1 0.881 0.0790 0.7267 1.000 30 13 1 0.814 0.0978 0.6220 1.000 36 12 1 0.746 0.1107 0.5290 0.963 59 8 1 0.653 0.1303 0.3972 0.908 75 7 1 0.559 0.1412 0.2827 0.836 93 6 1 0.466 0.1452 0.1816 0.751 97 5 1 0.373 0.1430 0.0927 0.653 107 3 1 0.249 0.1392 0.0000 0.522

  11. Taksiran Kaplan-Meier bagifungsiKetahanan

  12. Taksiran Kaplan-Meier bagiFungsiKegagalan • Cara pertamautkmenaksirfungsikegagalanpadawaktut(j) : • Taksirankegagalan pd selangt(j) ≤ t < t(j+1) : • adalahtaksiranlajukegagalan per satuanwaktudlmselang [t(j),t(j+1)).

  13. MenaksirFungsiKegagalanKumulatif • DenganH(t) = - log S(t), danjikaadalahtaksiran KM drfungsikegagalan, makaadalahtaksirankegagalankumulatifsampaiwaktut. • Karena , makataksirannya • yaknijumlahkumulatifdaritaksiranpeluangmatidariselangpertamasampaiselangke-k, k = 1,2,…,r.

  14. MenaksirFungsiKegagalandanFungsiKegagalanKumulatifMenggunakanSplus/R • esth <- hazard.km(estS) • esth • par(mfrow=c(2,1)) • plot(esth$time,esth$hitilde,type=“s”) • plot(esth$time,esth$hihat,type=“s”) • plot(esth$time,esth$Hhat,type="s”) • plot(esth$time,esth$Htilde,type="s”) • Function SPlus/R hazard.kmdapatdiperolehdari: • http://www.mth.pdx.edu/~mara/TK.R.functions.R.txt

  15. time nidihihathitildeHhatse.HhatHtildese.Htilde 10 18 1 0.0062 0.0556 0.0572 0.0572 0.0556 0.0556 19 15 1 0.0061 0.0667 0.1262 0.0896 0.1222 0.0868 30 13 1 0.0128 0.0769 0.2062 0.1202 0.1991 0.1160 36 12 1 0.0036 0.0833 0.2932 0.1484 0.2825 0.1428 59 8 1 0.0078 0.1250 0.4267 0.1997 0.4075 0.1898 75 7 1 0.0079 0.1429 0.5809 0.2524 0.5503 0.2375 93 6 1 0.0417 0.1667 0.7632 0.3115 0.7170 0.2902 97 5 1 0.0200 0.2000 0.9864 0.3834 0.9170 0.3524 107 3 1 NA 0.3333 1.3918 0.5601 1.2503 0.4851

More Related