1 / 31

Computação Evolutiva: Programação Evolutiva

Pontifícia Universidade Católica do Paraná Curso de Especialização em Inteligência Computacional 2004/2005. Computação Evolutiva: Programação Evolutiva. Luiz Eduardo S. Oliveira, Ph.D. soares@ppgia.pucpr.br http://www.ppgia.pucpr.br/~soares. Introdução.

lilac
Download Presentation

Computação Evolutiva: Programação Evolutiva

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pontifícia Universidade Católica do Paraná Curso de Especialização em Inteligência Computacional 2004/2005 Computação Evolutiva: Programação Evolutiva Luiz Eduardo S. Oliveira, Ph.D. soares@ppgia.pucpr.br http://www.ppgia.pucpr.br/~soares Computação Evolutiva

  2. Introdução • A Programação Evolutiva (PE) foi proposta por Fogel, Owens e Walsh em meados da década de 60 • “Artificial Intelligence Through Simulated Evolution” • Proposta original: • Predição de comportamento de máquinas de estado finito. • Predição Computação Evolutiva

  3. Introdução Procedure EC{ t = 0; Initialize P(t); Evaluate P(t); While (Not Done) { Parents(t) = Select_Parents(P(t)); Offspring(t) = Procreate(Parents(t)); Evaluate(Offspring(t)); P(t+1)= Select_Survivors(P(t),Offspring(t)); t = t + 1; } Não existe cruzamento, somente mutação Computação Evolutiva

  4. Introdução • Na PE, cada indivíduo gera um único descendente através de mutação. • A melhor metade da população ascendente e a melhor metade da população descendente são reunidas para formar a nova geração Computação Evolutiva

  5. Introdução • Diferentemente dos AGs, a PE enfatiza os desenvolvimento de modelos comportamentais • Modelar o comportamento afim de prever o que pode acontecer (PREDIÇÃO). • Capturar a interação do sistema com seu ambiente. Computação Evolutiva

  6. Maquinas de Estado Finito • Uma maneira comum de se prever uma ação consiste na análise de ações passadas. • No contexto de uma máquina de estado finito, cada ação pode ser representada por um símbolo. • Dado uma seqüência de símbolos, deve-se prever qual será o próximo símbolo. Computação Evolutiva

  7. Máquinas de Estado Finito • Assim como nos AGs, os símbolos devem pertencer a um alfabeto finito. • Máquina de Estado Finito: • Analisar a seqüência de símbolos • Gerar uma saída que otimize uma dada função de fitness, a qual envolve a previsão do próximo símbolo da seqüência. • Mercado financeiro, previsão do tempo, etc... Computação Evolutiva

  8. Máquinas de Estado Finito • Podem ser vistas como transdutores: • Quando estimulado por um alfabeto finito de símbolos, responde com um outro alfabeto finito de símbolos e possui um número finito de estados. • Alfabetos de entrada e saída não são necessariamente idênticos. Computação Evolutiva

  9. Máquinas de Estado Finito: Um Exemplo Alfabeto de entrada de dois símbolos: I = {1, 0} Alfabeto de saída de três símbolos: O = {X, Y, Z} Máquina de três estados S = {A, B, C} Computação Evolutiva

  10. Máquinas de Estado Finito • Sub-conjunto das máquinas de Turing • Capazes de resolver todos os problemas matemáticos de uma classe definida. • Capazes de modelar ou representar um organismo ou um sistema. Computação Evolutiva

  11. Máquinas de Estado FinitoTarefa: Prever a próxima entrada • Medida da Qualidade: • Número de previsões corretas • Estado Inical: C • Sequência de Entrada • 011101 • Sequência de Saida • 110111 • Qualidade: 3 de 5 S = {A,B,C} I = {0,1} O = {0,1} Computação Evolutiva

  12. Operados usados na PE • Diferentemente dos AGs onde o cruzamento é um importante componente para a produção de uma nova geração, a mutação é o ÚNICO operador usado na PE. • Cada membro da população sobre mutação e produz UM filho. Computação Evolutiva

  13. Mutação • Cinco tipos de mutação podem ocorrer em uma máquina de estado finitos: • O estado inicial pode mudar. • O estado inicial pode ser eliminado. • Um estado pode ser adicionado. • Uma transição entre estados pode ser mudada. • O símbolo de saída para um determinado estado e símbolo de entrada pode ser mudado. Computação Evolutiva

  14. Seleção • Uma vez que cada pai gera um filho após a mutação, a população dobra de tamanho a cada geração. • Após o cálculo da fitness, conserva-se a melhor metade dos pais e a melhor metade dos filhos. • População de tamanho constante. Computação Evolutiva

  15. Seleção Nova População Pais Filhos Mutação Ranking Computação Evolutiva

  16. Critério de Parada • Fazer a predição utilizando o melhor indivíduo da população. • Isso pode ocorrer a qualquer instante • Se a fitness for satisfatória (Lei da Suficiência) o algoritmo pode ser terminado. • Fixar um número de gerações. Computação Evolutiva

  17. Alterando o Tamanho do Indivíduo • Diferentemente de outros paradigmas evolutivos, na PE a mutação pode mudar o tamanho do indivíduo. • Estados podem ser adicionados ou eliminados, de acordo com as regras vistas anteriormente. • Isso pode causar alguns espaços na tabela • Mutações neutras. Computação Evolutiva

  18. Alterando o Tamanho do Indivíduo • A mutação ainda pode criar uma transição que não seja possível, pois um estado pode ter sido eliminado durante a mutação. • Esses problemas devem ser identificados e corrigidos durante a implementação • Menos freqüentes em máquina com bastante estados. Computação Evolutiva

  19. PE com Indivíduos de Tamanho Fixo • Embora PE possa ter indivíduos de tamanho variável, é possível evoluir uma máquina de estado finitos com PE onde os indivíduos tem tamanho fixo. • Definir um número máximo de estados. • Para exemplificar, vamos considerar a máquina de predição apresentada anteriormente, a qual pode ter no máximo 4 estados. Computação Evolutiva

  20. Exemplo Cada estado pode ser representado por 7 bits B C D A 1 1 0 1 1 A B 1 0 1 0 1 B C 1 1 0 0 1 A B 0 0 0 0 0 D A Computação Evolutiva

  21. Exemplo • Como visto,cada estado pode ser representado por uma string de 7 bits. • Sendo assim, cada indivíduo possui 28 bits • Cada um representa uma máquina completa. B C D A 1 1 0 1 1 A B 1 0 1 0 1 B C 1 1 0 0 1 A B 0 0 0 0 0 D A Computação Evolutiva

  22. Exemplo II • Máquina de estado finito para jogar o Dilema do Prisioneiro. • O prisioneiro tem que tomar uma decisão em face da decisão do outro. • Questão de altruísmo ou egoísmo. Computação Evolutiva

  23. Dilema do Prisioneiro • Dois comparsas são pegos cometendo um crime. Levados à delegacia e colocados em salas separadas, lhes é colocada a seguinte situação com as respectivas opções de decisão: • Se ambos ficarem quietos, cada um deles pode ser condenado a um mês de prisão. • Se apenas um acusa o outro, o acusador sai livre. O outro, condenado em 1 ano. • Se os dois se acusarem, ambos pegam seis meses. Computação Evolutiva

  24. Dilema do Prisioneiro • As decisões são simultâneas e um não sabe nada sobre a decisão do outro. • Esse jogo mostra que, em cada decisão, o prisioneiro pode satisfazer seu próprio interesse (desertar) ou atender ao interesse do grupo (cooperar). Computação Evolutiva

  25. Dilema do Prisioneiro • Dilema • Admito inicialmente que meu colega planeja cooperar. Se eu cooperar também ambos pegamos 1 mês (nada mau) • Supondo a cooperação do meu colega, eu posso acusá-lo e sair livre (melhor situação) • Porém se eu coopero e ele me acusa, eu pego 1 ano! • Se eu acusar também, aí eu fico seis meses. • Logo, ele cooperando ou não o melhor a fazer é desertar! Computação Evolutiva

  26. Dilema do Prisioneiro • O problema é que seu colega pensa da mesma maneira, e ambos desertam. • Se ambos cooperassem, haveria um ganho maior para ambos, mas na otimização dos resultados não é o que acontece. • Ao invés de ficar um mês presos, ambos ficam 6 meses para evitar o risco de ficar 1 ano. Computação Evolutiva

  27. Dilema do Prisioneiro • A repetição do jogo, entretanto, muda radicalmente a forma de pensar. • Dois comparsas de longa data terão uma tendência muito maior à cooperação. • Com isso formam-se outras opções de estratégias. • A teoria dos jogos (John Nash) é bastante utilizada na economia para descrever e prever o comportamento econômico. Computação Evolutiva

  28. Máquina de estado finito para o dilema do prisioneiro [Fogel 95] Por exemplo: O rótulo C,D/C na flexa que vai de um estado X para um estado Y significa que o sistema está no estado X e no movimento anterior a máquina cooperou e o oponente desertou. Então coopere e vá para o estado Y. C – Cooperar D – Desertar Computação Evolutiva

  29. Exercício • Evolua a máquina de estados finitos vista anteriormente • Considerar 4 estados no máximo. • Utilizar a codificação vista anteriormente. • Considerar 5 indivíduos de 28 bits • Considerar que somente os indivíduos que tenham pelo menos dois estados ativos sejam admitidos na população inicial. • Para cada indivíduo, construa a máquina e calcule a qualidade da predição. Computação Evolutiva

  30. Realizando a Mutação • Para cada indivíduo, gere um número aleatório entre 0 e 1. Escolha um gene aleatoriamente e tome uma das seguintes ações. Computação Evolutiva

  31. Nova População • Avaliar a fitness e manter os melhores 50%, resultando assim uma nova população do tamanho da inicial. Computação Evolutiva

More Related