490 likes | 659 Views
VECTORES EN EL PLANO. PEDRO GODOY G. 2012. Un avión puede volar de Santiago a Madrid haciendo una escala técnica en Miami, sin embargo, se puede ahorrar combustible y contaminar menos la atmosfera, si el viaje se hace directamente, sin escalas, de Santiago a Madrid. MIAMI. C. B. MADRID.
E N D
VECTORES EN EL PLANO PEDRO GODOY G. 2012
Un avión puede volar de Santiago a Madrid haciendo una escala técnica en Miami, sin embargo, se puede ahorrar combustible y contaminar menos la atmosfera, si el viaje se hace directamente, sin escalas, de Santiago a Madrid. MIAMI C B MADRID A SANTIAGO
Asi tenemos que Def: Un vector es un segmento dirigido que tiene un origen y un extremo.
El MODULO de un vector, es la longitud de este, lo representamos como Características del vector DIRECCION : es la dirección de la recta que lo contiene. Si dos vectores son paralelos tienen la misma dirección.
SENTIDO es el que va del origen al extremo, lo representamos por la punta de la flecha. Una dirección tiene dos sentidos. Vectores equipolentes: Son aquellos que tienen la misma dirección, el mismo sentido, y el mismo módulo.
Vector libre: Es el conjunto formado por un vector y todos los vectores equipolentes a el.
Suma geométrica de un vector: Para sumar dos vectores u y v podemos hacerlo de dos maneras 1.- Desde un punto cualquiera del plano colocamos un vector equipolente a u del extremo de este colocamos otro vector que sea equipolente a v de manera que coincidan el extremo del primero con el origen del segundo. La suma es el vector que tienen como origen el origen del primero y como extremo el extremo del segundo. u v u+v
2.- Ley del paralelogramo: Formamos un paralelogramo con dos vectores equipolentes a los dados de forma que coincidan los orígenes y la suma es la diagonal del paralelogramo tomando como origen de los vectores equipolentes elegidos
OBS: Si a es un vector cualesquiera entonces –a es un vector con la misma dirección, el mismo módulo pero no el mismo sentido. a -a ka a
Resumiendo, multiplicar un vector por un número k equivale a alargar (o encoger) su módulo tantas veces como indica el valor absoluto de k, e invertir su sentido si k es negativo. El número k por el que se multiplica un vector recibe el nombre de escalar.
Dados los vectores a y b es posible obtener gráficamente lo siguiente
EJERCICIO: Dados los vectores Aplicando la regla del paralelogramo dibuja en tu cuaderno los vectores
Base: Dos vectores cualesquiera del plano con distinta dirección forman una base porque nos permiten expresar cualquier otro Vector como combinación lineal de ellos a v b De este modo se verifica que v = xa + yb A los números (x, y) se les llama coordenadas de v respecto de la base
Obs: Se le llama base canónica a dos vectores perpendiculares y modulo unidad Se anotan por {i , j } siendo i y j los vectores citados. Sistema de referencia en el plano. Es el conjunto formado por: - Un punto fijo O, llamado origen. Tomando la base canónica B= {i , j} como base habitual, un sistema de referencia queda expresado en la forma siguiente Dado un sistema de referencia , a cada punto P del plano se le asocia un vector OP que recibe el nombre de vector de posición
Es decir, las coordenadas de i son (1, 0) las coordenadas de j son (0, 1) Podemos, por tanto, expresar i y j en función de sus coordenadas. I =(1, 0) j = (0. 1) En el caso de v y w será: v = 3i +4j = (3, 4); w =9i +5j = (9, 5) En general, si v =xi + yj, podemos poner v = (x, y) donde x e y son las coordenadas del vector.
OBS. Si A (a,b) y B(c,d) son dos puntos del plano, entonces el vector asociado es
Operaciones con vectores expresados en coordenadas de una base canónica. Suma:
Vemos que las coordenadas de u+v se obtienen sumando las coordenadas de u y v En general, si y entonces,
Si a es un vector cualquiera, y k es real Si k > 0 entonces Ka es un vector que tiene la misma dirección, y sentido Si k < 0 entonces Ka es un vector que tiene la misma dirección, y cambia de sentido ka K>0 b a kb K<0
Sea v = xi + yj y u = ai + bj entonces el producto v u = (xi + yj )(ai + bj )=xaii+xbij+ yaji + ybjj Pero ii = 1, ij = ji=o y jj= 1 Tenemos que v u= (x,y)(a,b)= xa + yb Ejemplo : v u = (2,3) (4,5)= 8 + 15 = 23 Obs : v u = u v
u v OBS: Si u v = 0 entonces u y v son vectores perpendiculares
VECTOR UNITARIO Luego se cumple la relación O bien
Proyección de vector sobre otro Al proyectar el vector sobre la dirección del Vector ; obtenemos: Proyección de sobre : medida del segmento Vector proyección de sobre =
Operaciones básicas de determinantes + - - - + +