1 / 7

PERAMALAN DENGAN REGRESI DAN KORELASI BERGANDA

PERAMALAN DENGAN REGRESI DAN KORELASI BERGANDA. Juhari , SE, MM. Pengantar. Merupakan salah satu metode peramalan yang bersifat kausalitas . Analisis regresi berganda sama dengan regresi sederhana , hanya terletak pada jumlah variabel independen yang digunakan .

london
Download Presentation

PERAMALAN DENGAN REGRESI DAN KORELASI BERGANDA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PERAMALAN DENGAN REGRESI DAN KORELASI BERGANDA Juhari, SE, MM.

  2. Pengantar • Merupakansalahsatumetodeperamalan yang bersifatkausalitas . • Analisisregresibergandasamadenganregresisederhana, hanyaterletakpadajumlahvariabelindependen yang digunakan. • Model: Y’ = a + b1X1 + b2X2 + …+ bkXk + e dengan: Y’ : nilaivariabeldependen (Y) a : konstantan b1 , b2,…bk : koefisienregresiparsial X1,X2,…Xk X : Variabelindependen

  3. Rumus • Y = n.a +b1 X1 + b2 X2 • X1Y= aX1 + b1X1² + b2 X1X2 • X2Y= a X2 + b1 X1X2 + b2 X2²

  4. Standard error of estimate: (SYX1X2) SYX1X2 = n-m m= banyakvariabel  (Y-Y’)²

  5. KorelasiBerganda • Setelahregresi linier bergandadihitung, makaselanjutnyakitamenentukanderajatasosiasiantaravariabel-variabelitu (Y dan X1, X2…dst) • Formulasi: {(SY.X1.X2) ² } {n (n-1)} 1- R= n.Y2 – (Y)²

  6. KoefisienDeterminasi/KoefisienPenentuan (KP) KP= R² {(SYX1X2) ² } {n (n-1)} Apabilanilai R² dikalikan 100%, makaakandiperolehsumbangan X1 dan X2 terhadapnaikturunnya Y [ 1- ]² R= n.Y2 – (Y)²

  7. Contohsoal:

More Related