1 / 59

ESTADÍSTICA PARA 3º Y 4º DE E.S.O.

ESTADÍSTICA PARA 3º Y 4º DE E.S.O. Por Mª Ángeles Pajuelo. Índice. Un poco de historia Estadística: concepto y clases. Estadística descriptiva. Población Muestra Variables estadísticas. discretas continuas. cuantitativas. cualitativas. Frecuencia . Clases. Elección de muestra

lori
Download Presentation

ESTADÍSTICA PARA 3º Y 4º DE E.S.O.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ESTADÍSTICA PARA 3º Y 4º DE E.S.O. Por Mª Ángeles Pajuelo

  2. Índice • Un poco de historia • Estadística: concepto y clases. Estadística descriptiva. • Población • Muestra • Variables estadísticas discretas continuas cuantitativas cualitativas • Frecuencia. Clases Elección de muestra seleccionar variables recolección de datos organización de datos elaboración de tablas elaboración de gráficas cálculo de parámetros • Procesoestadístico

  3. Un poco de historia El origen de la estadística se encuentra en el término Estado, pues fueron los gobernantes los que primero se preocuparon de elaborar y clasificar las interminables listas de los recursos humanos y materiales que constituían el patrimonio estatal. La información más antigua sobre la elaboración de una estadística la proporciona el historiador griego Herodoto (484-420a.C.), al relatar que en el año 3050 a.C. el faraón de Egipto ordenó un recuento de los bienes que poseía el país para llevar a cabo una gran obra: la construcción de las pirámides. Desde hace tiempo las estadísticas no son patrimonio exclusivo del Estado. También las elaboran compañías de seguros, bancos, investi- gadores.....o simplemente personas interesadas en obtener y organizar determinada información para analizarla e interpretarla.

  4. Concepto de estadística La Estadística es la parte de las Matemáticas que estudia métodos para interpretar datos obtenidos de investigaciones o experimentos aleatorios (aquellos en los que no se puede predecir el resultado aunque se realicen siempre en las mismas condiciones), con el fin de extraer de ellos unas conclusiones.

  5. Clases La Estadística puede ser: a) Descriptiva.-Trata de obtener unas conclusiones a partir de ciertos datos mediante el empleo de gráficos o la obtención de unos ciertos valores que los representen a todos. b) Inferencial.-Trata de determinar los valores que adoptarán una serie de datos muy numerosos, que forman una población mediante el estudio de unos cuantos de ellos extraídos de la población de una manera significativa y que forman una muestra.

  6. Estadística descriptiva • Es una parte de las matemáticas que nos enseña a: • Recoger datos de manera ordenada • Representar datos mediante gráficas o tablas comprensibles • Calcular valores numéricos representativos, que permitan sin- • tetizar, analizar y comparar diferentes colecciones de datos

  7. Población y muestra Población: es el conjunto de todos los elementos objeto de nuestro estudio Muestra: es un subconjunto, extraído de la población, cuyo estudio sirve para inferir características de toda la población Individuo: es cada uno de los elementos de la población o de la muestra. El tamaño de la población o de la muestra es el número de elementos que componen una u otra, y se suele designar con N

  8. Variables estadísticas • Se llama variable estadística a cada uno de los caracteres que • se desean observar en los individuos de una población. • Las variables estadísticas pueden ser: • cuantitativas: si sus valores son números • cualitativas: si sus valores no son números • Se denomina recorrido o rango de una variable cuantitativa a la • diferencia entre el mayor y el menor de sus valores posibles. • Para las variables cualitativas no se define el recorrido • Las variables estadísticas cuantitativas pueden ser discretas o • continuas

  9. Clasificación de las variables estadísticas

  10. Más definiciones • Variables discretas son las que toman valores que se pueden • enumerar, fáciles de precisar porque están separados, es de- • cir, las que solo pueden tomar valores aislados. • Variables continuas son las que pueden tomar todos los va- • lores de un intervalo Los valores de la variable estadística se representan por x1, x2, x3,.........,xn Se llama distribución estadística al conjunto de datos estadísticos.

  11. Veamos unos ejemplos Una profesora de educación física, rellena las fichas de sus alumnos y alumnas de 3º de E.S.O. Y pide, entre otros datos, la edad, la talla y los deportes favoritos de cada uno Población: los alumnos-as de 3º de E.S.O. Variables estadísticas: la edad, la talla, los deportes favoritos La variable “deporte favorito” es cualitativa Las variables “edad y talla” son cuantitativas La edad sería una variable cuantitativa discreta La talla sería una variable cuantitativa continua.

  12. ejemplos En el departamento de control de calidad de una fábrica de bombillas, se desea hacer un estudio sobre el número de horas de duración; sería imposible hacer el estudio sobre todas las bombillas fabricadas, de ahí la necesidad de tomar una muestra Cuanto mayor sea la muestra, más representativa es de la población.

  13. Frecuencias Frecuencia absoluta de cada valor, es el nº de veces que éste se repite, y se representa por Fi (F1 es la frecuencia absoluta del primer valor, F2 es la frecuencia absoluta del segundo valor, y así sucesivamente). La suma de las frecuencias absolutas debe coinci- dir con el tamaño de la población o, en su caso, de la muestra Frecuencia absoluta acumulada Fai es la suma de la frecuen- cia absoluta de un valor con las de los que le preceden. Frecuencia relativa, fi, es el cociente entre la frecuencia abso- luta y el nº total de individuos que componen la población o la muestra observada. Frecuencia porcentual, %, es el tanto por ciento con el que aparece cada valor de la variable respecto del tamaño de la mues- tra. Se obtiene multiplicando por 100 cada frecuencia relativa

  14. Proceso seguido en Estadística La información estadística nos llega mediante gráficas o tablas muy bien construidas, con las que resulta muy sencillo entender la información que se nos da. Sin embargo, esas tablas y gráfi- cas son el resultado de un largo proceso. Veamos sus principa- les pasos: 1) Elegir una muestra representativa de la población (si es que la población es muy grande), de manera que los resultados que obtengamos para la muestra los podremos suponer válidos para la población 2) Seleccionar las variables que se van a analizar. Debe quedar muy claro cuál es la variable y cuáles sus posibles valores. 3) Recolección de datos 4) Organización de datos

  15. Proceso seguido en Estadística 5) Elaboración de tablas 6) Elaboración de gráficas 7) Cálculo de parámetros A estos tres últimos pasos es a lo que a continuación nos vamos a dedicar.

  16. 1º-Confección de una tabla de frecuencias Una vez recogidos los datos, hay que tabularlos; es decir, hay que confeccionar una tabla en la que aparezcan bien organizados los valores de la variable que se está estudiando y el número de individuos que toma cada valor o cada intervalo de valores. Es lo que se llama una tabla de frecuencias. En esta tablas deben aparecer - los valores de la variable. Si se encuentran agrupadas en cla- ses, deben aparecer los extremos superior e inferior, así como la marca de clase (que son los puntos medios de cada clase). Es aconsejable escoger los extremos inferior y superior de cada intervalo de modo que se sitúen en números “redondos”; por ejemplo, múltiplos de 5, de 10, etc. Las clases deben tener la misma amplitud.

  17. continuación de confección de tablas El nº de clases que debemos formar es de libre elección, pero existe un criterio muy general en el que se aconseja formar, aproximadamente, tantas clases como la raíz cua- drada del número total de datos. - las frecuencias absolutas - las frecuencias relativas y a veces es conveniente incluir - las frecuencias absolutas y relativas acumuladas, y las porcentuales

  18. Ejemplo de confección de una tabla con datos aislados Notas obtenidas por un grupo de alumnas recuentotabla de frecuencias 1 IIxi fi 9, 4, 8, 5, 5, 4, 12 IIII1 2 7, 2, 2, 3, 9, 6, 43 III2 4 10, 8, 2, 1, 6, 7, 64 IIII3 3 10, 10, 8, 8, 4, 6, 55 I++I II4 4 5, 10, 6, 7, 2, 5, 56 I++I I5 7 3, 5, 3, 6, 87 III6 6 8 I++I7 3 9 II8 5 10 IIII9 2 10 4

  19. Ejemplo de confección de una tabla con datos agrupados en intervalos Tabla resumen intervalo frecuencia [148,5-153,5) 2 (153,5-158,5) 4 (158,5-163,5) 11 (163,5-168,5) 14 (168,5-173,5) 5 (173,5-178,5) 4 Tallas de 40 alumnos-as de una clase 168, 160, 168, 175, 175 168, 168, 158, 149, 160 178, 169, 158, 163, 171 162, 165, 163, 156, 174 160, 165, 154, 163, 165 161, 162, 166, 163, 159 170, 165,150, 167, 164 165, 173, 172, 168, 168

  20. Más ejemplos de tablas de frecuencias Una profesora de educación física, rellena las fichas de sus alumnos y alumnas de 3º de E.S.O. Y pide, entre otros datos, la edad, la talla y los deportes favoritos de cada uno Supongamos que la profesora del ejemplo anota en una tabla las siguientes observaciones sobre los 24 alumnos-as que tiene en clase. Las siglas del deporte son: A=fútbol, B=baloncesto, C=balonmano, D=voleibol. Edad: 13,13,14,13,14,15,14,13,13,14,13,13,14,14,15,13,13,14,15,13,14,14,14,13 Talla:156,174,182,184,171,163,185,174,183,182,175,157,188,173,175,161,158,154,189,172,175,178,189,174 Deporte: A,A,B,C,A,B,B,C,D,D,C,B,A,A,A,C,C,D,A,D,C,B,B,B Veamos las tablas de frecuencias para cada variable:

  21. Edad Fi Fai fi % 13 11 11 0,46 46 14 10 21 0,42 42 15 3 24 0,12 12 Suma 24 1 100 100 Talla Fi Fai fi % (150,160) 4 4 0,17 17 (160;170) 2 6 0,08 8 (170;180) 10 16 0,42 42 (180;190) 8 24 0,33 33 Suma 24 1 100 Deporte Fi Fai fi % A 7 7 0,29 29 B 7 14 0,29 29 C 6 20 0,25 25 D 4 24 0,17 17 Suma 24 1 100

  22. 2º-Gráfico adecuado al tipo de información La elaboración de gráficos estadísticos es un arte. En los medios de comunicación encontramos espléndidas repre- sentaciones que nos permiten, con un solo golpe de vista, entender de qué se nos habla y asimilar la información que se nos da. Sin pretender llegar a tan alto nivel, vamos a ver algunas claves para utilizar con corrección los tipos de gráficos de uso más frecuente.

  23. Diagrama de barras El diagrama de barras se utiliza para representar tablas de frecuencias correspondientes a variables cuantitativas discretas. Por eso las barras son estrechas y se sitúan sobre los valores puntuales de la variable. A veces se utiliza para representar distribuciones de variables cualitativas.

  24. EJEMPLO DE DIAGRAMA DE BARRAS Nº de accidentes sufridos por 200 conductores al año 0 1 2 3 4 5 6

  25. OTRO EJEMPLO DE DIAGRAMA DE BARRAS Carreras que piensan hacer los estudiantes de un centro de enseñanza secun- daria.

  26. Histograma de frecuencias Histograma viene del griego histos, que significa barra y tam- bién mástil de barco. Se utiliza fundamentalmente, para distribuciones de variable continua. Por eso se usan rectángulos tan anchos como los intervalos. Aunque los datos no vengan dados por intervalos, si se trata de una variable continua, debemos usar el histograma y no el diagrama de barras. También recurriremos al histograma para representar distribu- ciones de una variable discreta con valores agrupados en intervalos.

  27. Ejemplos de histogramas

  28. Polígono de frecuencias El polígono de frecuencias se utiliza en los mismos casos que el histograma. Se construye uniendo los puntos medios de los rectángulos y prolongando, al principio y al final, hasta llegar al eje. Su sentido es suavizar los escalones que se producen en el histograma

  29. Diagrama de sectores En un diagrama de sectores, el ángulo de cada sector es proporcional a la frecuencia correspondiente. Se puede utilizar para todo tipo de variables, pero se usan muy frecuentemente para las variables cualitativas. Este tipo de diagrama es especialmente adecuado para representar, en varios de ellos, diversas situaciones similares y poder establecer comparaciones.

  30. Ejemplo de diagrama de sectores

  31. Otro ejemplo de diagrama de sectores En este otro ejemplo, comparemos el reparto de la población laboral española, según el tipo de trabajo, con las de Grecia y Gran Bretaña, en 1993.

  32. Pirámides de población Se construyen estos gráficos mediante histogramas horizonta- les superpuestos. Se utilizan para comparar las características más relevantes de la población de un Estado, Provincia, etc..., y sus variaciones en un determinado período de tiempo.

  33. Cartogramas Son representaciones gráficas de unidades geográficas, diferenciadas por colores, rayas o puntos

  34. Pictogramas Los pictogramas representan la variable mediante un dibujo cuyo tamaño debe ser proporcional a la frecuencia. Estos grá- ficos son poco fiables, ya que es muy difícil representar datos porcentuales exactos a través de un dibujo. Evolución del paro en España desde 1982 a 1986

  35. Series cronológicas o diagramas lineales Se usan para mostrar las variaciones de uno o varios caracteres estadísticos con el paso del tiempo.

  36. 3º-Parámetros estadísticos Los parámetros estadísticos sirven para sintetizar la informa- ción dada por una tabla o por una gráfica, y permiten apreciar con rapidez y eficacia las características más relevantes de la distribución. Los hay de dos tipos: decentralización que nos indican en torno a qué valor se distribuyen los datos, y de dispersiónque nos informan sobre cuánto se alejan del centro los valores de la distribución.

  37. CLASIFICACIÓN DE LOS PARÁMETROS ESTADÍSTICOS

  38. Medidas de centralización • Las tablas estadísticas y las representaciones gráficas dan una idea • del comportamiento de una distribución. Sin embargo, se hace • necesario simplificar ese conjunto de datos mediante unos valores • numéricos. La palabra parámetro se emplea como un valor numérico • que sirve para caracterizar una distribución. • Los parámetros más utilizados son: • LA MEDIA ARITMÉTICA • LA MODA • LA MEDIANA

  39. Media aritmética Es el cociente entre la suma de todos los valores de la variable y el número de éstos. Se representa por y viene dada por la expresión: Cuando la variable es de tipo continuo expresada en intervalos, xi es el punto medio de cada intervalo, es decir, la marca de clase. La media aritmética es el parámetro de centralización más utilizado, y en su cálculo intervienen todos los datos de la distribución.

  40. Ejemplo En una clase de 40 alumnos, las notas de matemáticas son: NotasNº alumnosxi.fi 1 2 2 2 2 4 3 4 12 4 5 20 5 8 40 6 9 54 7 3 21 8 4 32 9 3 27 N=40 Suma xi.fi=212 La media sería = 212/40 = 5,3

  41. Ejemplo Halla la media aritmética del peso de los 40 alumnos de una clase: Peso fi xi fi.xi 50-55 4 52,5 210 55-60 8 57,5 460 60-65 14 62,5 875 65-70 12 67,5 810 70-75 2 72,5 145 402500 Media = = 62,5 kg

  42. Mediana La mediana ,Me,de una distribución es un valor tal que la mitad al menos de los valores es menor o igual a Me y la mitad al menos de los valores es mayor o igual a Me Cuando son pocos los valores se ordenan crecientemente. Si el nº es par, se toma como mediana la media aritmética de los dos datos centrales, y si es impar, el valor central. Cuando tenemos muchos valores, para ordenarlos crecientemente se toma en la tabla una columna denominada de frecuencias absolutas acumuladas (Fi). La mediana se puede calcular en distribuciones de tipo cuantitativo y en las de tipo cualitativo en las que puedan ordenarse las modalidades.

  43. Ejemplo Calcula la mediana del cuadro siguiente correspondiente a las notas de los 40 alumnos de una clase: Notas fi Fi suspenso 8 8=8 aprobado 15 8+15=23 notable 10 23+10=33 sobresaliente 7 33+7=40 La mediana es el primer valor de la variable (notas) correspondiente a la frecuencia acumulada (Fi) inmediatamente superior a la mitad del nº de datos. Me = aprobado N/2 =20 ya que el valor de Fi inmediatamente superior a 20 es 23.

  44. Moda La moda Mo de una distribución, es la variable de mayor frecuencia. En los ejemplos anteriores del peso y notas de los 40 alumnos de una clase, la moda es, en el primer caso, el intervalo (60,65), y en el 2º caso la calificación de aprobado. Una distribución puede no tener moda o tener 2 o más modas (distr. bimodal, trimodal, .....) Tanto la media, como la mediana y la moda, son parámetros que informan de los valores centrales de una serie estadística, pero...... ¿cuál es más representativo?. Observemos los ejemplos siguientes.

  45. Ejemplo Se ha seleccionado una muestra de 10 alumnos de un Instituto y se han estudiado algunas de sus características: talla(cm) 162 165 167 169 170 170 170 176 182 185 paga semanal 1500 1700 1750 1500 4000 3500 1200 1500 1700 1600 nº calzado 40 40 40 40 40 42 42 42 44 44 Para la talla es media=171Me=170Mo=170 Para la paga semanal media=1995Me=1650Mo=1500 Para el nº de calzado media=41,4Me=41Mo=40 Para la talla, el valor central a considerar puede ser la media ya que los otros parámetros toman valores muy parecidos. Para la paga, la mediana refleja mejor la realidad. Para el calzado, la moda es el valor más representativo.

  46. Medidas de dispersión • A veces, la media, la moda y la mediana de una distribución no nos • dice casi nada sobre ella. Es necesario conocer si los datos están o no • agrupados alrededor de los valores centrales, es decir, su dispersión. • Las medidas de dispersión son: • LA DESVIACIÓN MEDIA • LA DESVIACIÓN TÍPICA • Pero antes de definir estas medidas, veamos • -Rango o recorrido • -Desviación respecto a la media

  47. Recorrido o rango Llamamos recorrido o rango de una distribución a la diferencia entre el mayor valor y el menor valor de la variable estadística Cuanto menor es el rango o recorrido de una distribución, mayor es el grado de representatividad de los valores centrales Ejemplo: Mercedes y Paco miden 169 y 171 respectivamente. Ana y Luís es otra pareja que miden 145 y 195 respectivamente. Ambas distribuciones tienen la misma media: 170, pero evidentemente nadie los confundirían por la calle. El rango de la pareja Mercedes y Paco: 171-169=2 El rango de la pareja Ana y Luís:195-145=50 Diremos por tanto que la 2ª pareja está más dispersa que la 1ª

  48. Desviación respecto a la media Las diferencias entre cada valor de la variable xi y la media aritmética se llaman desviaciones respecto a la media (di). Cada diferencia di nos da una idea de cómo se aproximan los valores xi a la media aritmética. Estas diferencias pueden ser positivas, negativas o nulas. Veamos con un ejemplo la siguiente propiedad: “ la suma de las desviaciones respecto a la media es igual a cero”

  49. Ejemplo Tallas Desviaciones respecto (cm) a la media 145 145-170= -1 195 195-170 = 1 =170 suma= 0 Tallas Desviaciones respecto (cm) a la media 169 169-170= -1 171 171-170 = 1 =170 suma= 0 Ana Luís Mercedes Paco

  50. Desviación media Es la media aritmética de los valores absolutos de las desviaciones respecto a la media. Se representa por D

More Related