1 / 16

Ekonometrika

Ekonometrika. Program Studi Statistika, semester Ganjil 2012/2013. Contoh Aplikasi Regresi Dengan Peubah Dummy. Data tentang gaji ( wage ) dan IQ ( iq ) dari 935 individu Terdapat beberapa peubah dummy untuk menggambarkan karakteristik masing-masing individu selain IQ

madison
Download Presentation

Ekonometrika

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ekonometrika Program Studi Statistika, semester Ganjil 2012/2013 Dr. Rahma Fitriani, S.Si., M.Sc

  2. ContohAplikasiRegresiDenganPeubah Dummy • Data tentanggaji (wage) dan IQ (iq) dari 935 individu • Terdapatbeberapapeubah dummy untukmenggambarkankarakteristikmasing-masingindividuselain IQ • Peubah dummy jeniskelamin (male): • Laki-laki: male =1 • Perempuan: male=0 • Peubah dummy tingkatpendidikan (educ1, educ2, educ3, daneduc4): • Lulusan SMP: educ1=1, selainnya 0 • Lulusan SMA: educ2=1, selainnya 0 • Lulusan S1: educ3=1, selainnya 0 • Lulusan S2: educ4=1, selainnya 0

  3. Ingindiperolehhubunganantaragajidantingkat IQ • Ingin diketahui apakah selain IQ, jenis kelamin juga mempengaruhi gaji, dengan pengaruh konstan (intersep dummy). • Ingin diketahui apakah jenis kelamin mempengaruhi marginal effect dari IQ terhadap gaji (slope dummy).

  4. Ingindiketahuiapakahselain IQ, jeniskelaminmempengaruhigajisecara konstan maupun secara marjinal (combined effect) • Ingindiketahuiapakahgajidipengaruhiolehtingkatpendidikan

  5. Gajiberdasarkan IQ • Model 1: OLS, using observations 1-935 • Dependent variable: WAGE • coefficient std. error t-ratio p-value • --------------------------------------------------------- • const 116.992 85.6415 1.366 0.1722 • IQ 8.30306 0.836395 9.927 3.79e-022 *** • Mean dependent var 957.9455 S.D. dependent var 404.3608 • Sum squared resid 1.38e+08 S.E. of regression 384.7667 • R-squared 0.095535 Adjusted R-squared 0.094566 • F(1, 933) 98.54936 P-value(F) 3.79e-22 • Log-likelihood -6891.422 Akaike criterion 13786.84 • Schwarz criterion 13796.53 Hannan-Quinn 13790.54 • IQ mempunyaihubunganpositifterhadapgaji (nyata) • Model kurangbaikkarena R2kecil

  6. Gajiberdasarkan IQ danJenisKelamin (Intercept dummy) • Model 2: OLS, using observations 1-935 • Dependent variable: WAGE • coefficient std. error t-ratio p-value • --------------------------------------------------------- • const 224.844 66.6424 3.374 0.0008 *** • IQ 5.07663 0.662354 7.665 4.50e-014 *** • MALE 498.049 20.0768 24.81 1.02e-104 *** • Mean dependent var 957.9455 S.D. dependent var 404.3608 • Sum squared resid 83193885 S.E. of regression 298.7705 • R-squared 0.455239 Adjusted R-squared 0.454070 • F(2, 932) 389.4203 P-value(F) 1.2e-123 • Log-likelihood -6654.402 Akaike criterion 13314.80 • Schwarz criterion 13329.33 Hannan-Quinn 13320.34 • Model lebihbaikkarena R2meningkat • 1 unit kenaikan IQ meningkatkangajisebesar 5.07 unit • Pegawailaki-lakimempunyaigajilebihbanyak 498 unit dibandingkandenganpegawaiperempuan, kenaikantsbnyatasecarastatistik

  7. Gaji GarisregresiuntukpegawaiLaki-laki Garisregresiuntukpegawaiperempuan 224.84+498.05=722.89 224.84 IQ

  8. Gajiberdasarkan IQ dan IQ*JenisKelamin (Slope dummy) • Model 3: OLS, using observations 1-935 • Dependent variable: WAGE • coefficient std. error t-ratio p-value • --------------------------------------------------------- • const 412.860 67.3637 6.129 1.31e-09 *** • IQ 3.18418 0.679283 4.688 3.18e-06 *** • MaleIQ 4.84013 0.193746 24.98 7.49e-106 *** • Mean dependent var 957.9455 S.D. dependent var 404.3608 • Sum squared resid 82728978 S.E. of regression 297.9346 • R-squared 0.458283 Adjusted R-squared 0.457120 • F(2, 932) 394.2274 P-value(F) 8.7e-125 • Log-likelihood -6651.782 Akaike criterion 13309.56 • Schwarz criterion 13324.09 Hannan-Quinn 13315.10 • R2meningkattapitidakterlalubesar • Padapegawaiperempuan 1 unit kenaikan IQ meningkatkangajisebesar 3.18 unit • Padapegawailaki-laki 1 unit kenaikan IQ meningkatkangajisebesar (3.18+4.84)=8.02 unit • Perbedaan yang nyataantarakenaikangajiantarakaryawanlaki-lakidanperempuan

  9. GarisregresiuntukpegawaiLaki-laki Slope: 3.18+4.84=8.02 Garisregresiuntukpegawaiperempuan Slope: 3.18

  10. Gajiberdasarkan IQ, JenisKelamindan IQ*JenisKelamin • Model 4: OLS, using observations 1-935 • Dependent variable: WAGE • coefficient std. error t-ratio p-value • -------------------------------------------------------- • const 357.857 84.7894 4.221 2.68e-05 *** • IQ 3.72852 0.849174 4.391 1.26e-05 *** • MaleIQ 3.41212 1.35097 2.526 0.0117 ** • MALE 149.104 139.602 1.068 0.2858 • Mean dependent var 957.9455 S.D. dependent var 404.3608 • Sum squared resid 82627733 S.E. of regression 297.9121 • R-squared 0.458946 Adjusted R-squared 0.457202 • F(3, 931) 263.2382 P-value(F) 1.1e-123 • Log-likelihood -6651.210 Akaike criterion 13310.42 • Schwarz criterion 13329.78 Hannan-Quinn 13317.80

  11. Gajiberdasarkan IQ, JenisKelamindan IQ*JenisKelamin • coefficient std. error t-ratio p-value • -------------------------------------------------------- • const 357.857 84.7894 4.221 2.68e-05 *** • IQ 3.72852 0.849174 4.391 1.26e-05 *** • MaleIQ 3.41212 1.35097 2.526 0.0117 ** • MALE 149.104 139.602 1.068 0.2858 • Pada IQ yang sama, gajipegawailaki-lakilebihbanyak 149.104 unit daripadagajipegawaiperempuan • Padapegawaiperempuan 1 unit kenaikan IQ meningkatkangajisebesar 3.72 unit • Padapegawailaki-laki 1 unit kenaikan IQ meningkatkangajisebesar (3.72+3.41)=7.13 unit

  12. GarisregresiuntukpegawaiLaki-laki Slope: 3.73+3.41=7.13 Garisregresiuntukpegawaiperempuan 357.86+149.10=506.96 Slope:3.73 357.86

  13. Gajiberdasarkantingkatpendidikan, Lulusan SMP sebagaireferensi • Model 5: OLS, using observations 1-935 • Dependent variable: WAGE • coefficient std. error t-ratio p-value • --------------------------------------------------------- • const 774.250 40.9511 18.91 1.00e-067 *** • EDUC2 88.4218 45.3045 1.952 0.0513 * • EDUC3 221.417 48.8868 4.529 6.69e-06 *** • EDUC4 369.118 47.6913 7.740 2.59e-014 *** • Mean dependent var 957.9455 S.D. dependent var 404.3608 • Sum squared resid 1.37e+08 S.E. of regression 384.1553 • R-squared 0.100340 Adjusted R-squared 0.097441 • F(3, 931) 34.61189 P-value(F) 3.27e-21 • Log-likelihood -6888.932 Akaike criterion 13785.86 • Schwarz criterion 13805.23 Hannan-Quinn 13793.25

  14. coefficient std. error t-ratio p-value --------------------------------------------------------- const 774.250 40.9511 18.91 1.00e-067 *** EDUC2 88.4218 45.3045 1.952 0.0513 * EDUC3 221.417 48.8868 4.529 6.69e-06 *** EDUC4 369.118 47.6913 7.740 2.59e-014 *** • Lulusan SMA mempunyaigaji 88.42 unit lebihbanyakdaripadalulusan SMP • Lulusan S1 mempunyaigaji 221.42 unit lebihbanyakdaripadalulusan SMP • Lulusan S2 mempunyaigaji 369.118 unit lebihbanyakdaripadalulusan SMP

  15. Gajiberdasarkantingkatpendidikan, Lulusan S2 sebagaireferensi • Model 6: OLS, using observations 1-935 • Dependent variable: WAGE • coefficient std. error t-ratio p-value • --------------------------------------------------------- • const 1143.37 24.4432 46.78 1.18e-246 *** • EDUC1 -369.118 47.6913 -7.740 2.59e-014 *** • EDUC2 -280.697 31.1926 -8.999 1.26e-018 *** • EDUC3 -147.702 36.1994 -4.080 4.88e-05 *** • Mean dependent var 957.9455 S.D. dependent var 404.3608 • Sum squared resid 1.37e+08 S.E. of regression 384.1553 • R-squared 0.100340 Adjusted R-squared 0.097441 • F(3, 931) 34.61189 P-value(F) 3.27e-21 • Log-likelihood -6888.932 Akaike criterion 13785.86 • Schwarz criterion 13805.23 Hannan-Quinn 13793.25

  16. coefficient std. error t-ratio p-value --------------------------------------------------------- const 1143.37 24.4432 46.78 1.18e-246 *** EDUC1 -369.118 47.6913 -7.740 2.59e-014 *** EDUC2 -280.697 31.1926 -8.999 1.26e-018 *** EDUC3 -147.702 36.1994 -4.080 4.88e-05 *** • Lulusan SMP mempunyaigaji 369.12 unit lebihsedikitdaripadalulusan S2 • Lulusan SMA mempunyaigaji 280.7 unit lebihsedikitdaripadalulusan S2 • Lulusan S1 mempunyaigaji 147.7 unit lebihsedikitdaripadalulusan S2

More Related