1 / 10

ANALISIS VARIANS KLASIFIKASI EKA ARAH KRUSKAL WALLIS (KW)

ANALISIS VARIANS KLASIFIKASI EKA ARAH KRUSKAL WALLIS (KW). Kegunaan :. Membandingkan data lebih dari dua populasi yang tidak berpasangan Data berskala ordinal. Metode. 1. Memperingkat data seluruh sampel. N = jumlah seluruh data (H menyebar mengikuti sebaran khi kuadrat dengan db = k -1)

maille
Download Presentation

ANALISIS VARIANS KLASIFIKASI EKA ARAH KRUSKAL WALLIS (KW)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ANALISIS VARIANS KLASIFIKASI EKA ARAH KRUSKAL WALLIS (KW) Kegunaan : Membandingkan data lebih dari dua populasi yang tidak berpasangan Data berskala ordinal

  2. Metode 1. Memperingkat data seluruh sampel N = jumlah seluruh data (H menyebar mengikuti sebaran khi kuadrat dengan db = k -1) K = cuplikan k Rj2 12 ∑ - 3(N +1) 2. H = nj N (N + 1) j=1 3.Keputusan : H0 diterima jika p > nilai α yang ditawarkan 4. Tabel Tabel Kruskal Wallis Jika kasus dalam cuplikan (nj) ≤5 dan k = 3 Jika kasus dalam cuplikan (nj) ≥ 5 atau k ≥ 3 Tabel Khi Kuadrat

  3. Contoh H0 : Berasal dari populasi yang sama } ?, α = 0,05 H1 : Berasal dari populasi berbeda

  4. ( 232 ) 12 242 442 - 3(13 +1) H = + + 5 4 13 (13 + 1) 4 4,459 H =

  5. Keputusan k =3, n1 = 5, n2 = 4, n3 = 4 H =4,459 α = 0,05 > 0,102 Gagal menolak H0 Gagal menolak H0

  6. Angka kembar 2,5 2,5 2 3 1

  7. k > 5 Hasil Pemeringkatan nj > 5 X Tabel KW Tabel Khi Kuadrat H = 18,464 Tolak H0 α = 0,05, db = k – 1 = 6 = 7 14,07

  8. H Hterkoreksi = ∑T 1- N3 - N T = t3 - t

  9. 18,464 Hterkoreksi = 960 1- 563 -56 Hterkoreksi = 18,566

More Related