1 / 13

Las Matemáticas Islámicas (800-1500)

Las Matemáticas Islámicas (800-1500) El Imperio islámico árabe se estableció a lo largo de Oriente Medio, Asia Central, África del Norte, Península Ibérica, y partes de la India, en el siglo VIII.

masako
Download Presentation

Las Matemáticas Islámicas (800-1500)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Las Matemáticas Islámicas (800-1500) El Imperio islámico árabe se estableció a lo largo de Oriente Medio, Asia Central, África del Norte, Península Ibérica, y partes de la India, en el siglo VIII. Breve Historia de las Matemáticas: La Edad Media (I)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González El legado árabe en Matemáticas fue también, como en otras ciencias, bastante notorio. Sin embargo, hay que destacar que durante el primer siglo del imperio musulmán no se produjo ningún desarrollo científico importante, ya que los árabes no habían conseguido el suficiente impulso intelectual, además del escaso interés por el conocimiento y la cultura en el resto del mundo entonces conocido. Fue tras su expansión por Europa y África cuando se dedicaron a incorporar a su propia ciencia los resultados de otras culturas (babilonios, egipcios, griegos, indios...), destacando la gran labor desarrollada en la traducción al árabe de obras antiguas, algunas de las cuales se conservan gracias a ellos. Dos libros griegos fueron fundamentales para la civilización islámica: "El Almagesto" (Ptolomeo), sobre Astronomía, y "Los Elementos" (Euclides), acerca de la Geometría. El primero les enseñaba a orientarse por las estrellas y el segundo, a hacer dibujos que señalasen la dirección de La Meca desde cualquier parte de la Tierra. Los musulmanes las estudiaron y dominaron como pocos pueblos.

  2. Al-Juarismi, fue un matemático, astrónomo y geógrafo persa musulmán chií, que vivió aproximadamente entre 780 y 850. Poco se conoce de su biografía, a tal punto que existen discusiones no saldadas sobre su lugar de nacimiento. (Bagdad o Jiva). Estudió y trabajó en Bagdad en la primera mitad del siglo IX, en la corte del califa al-Mamun. Para muchos, fue el más grande de los matemáticos de su época. Debemos a su nombre y al de su obra principal, "Hisāb al-ŷabrwa'lmuqābala“, las palabras álgebra, guarismo y algoritmo. De hecho, es considerado como el padre del álgebra y el introductor de nuestro sistema de numeración. Hacia 815 al-Mamun, séptimo califa Abásida, fundó en su capital, Bagdad, la Casa de la sabiduría (Bayt al-Hikma), una institución de investigación y traducción que algunos han comparado con la Biblioteca de Alejandría. En ella se tradujeron al árabe obras científicas y filosóficas griegas e indias. Contaba también con observatorios astronómicos. En este ambiente científico y multicultural se educó y trabajó al-Juarismi junto con otros científicos como los hermanos Banu Musa, al-Kindi y el famoso traductor Hunayn ibn Ishaq. Dos de sus obras, sus tratados de álgebra y astronomía, están dedicadas al propio califa.llñññññ Breve Historia de las Matemáticas: La Edad Media (II)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Al-Juarismi, aportó una meticulosa explicación a la solución de ecuaciones de segundo grado con raíces positivas, y fue el primero en enseñar el álgebra en sus formas más elementales. También introdujo el método fundamental de "reducción" y "balance", refiriéndose a la cancelación de términos iguales que se encuentran en lados opuestos de una ecuación. Esta operación fue descrita originariamente por Al-Jarismi como al-jabr. Su álgebra no solo consistía "en una serie de problemas sin resolver, sino en una exposición que comienza con las condiciones primitivas que se deben dar en todos los prototipos de ecuaciones posibles mediante una serie de combinaciones, a partir de este momento serán objeto de estudio."

  3. Thabit ibn Qurra(836, Turquía- 901, Bagdad), destacó en la Astronomía y las Matemáticas. Resulta sorprendente el gran conocimiento de idiomas que poseía, habilidad que le facilitó viajar com frecuencia por la mayoría de los países del Islam. En su juventud estudió en Bagdad en la Casa de la Sabiduría, y fue allí donde ingresó en la secta de los Sabianos muy interesada en la Astronomía y las Matemáticas. Tiene inumerables demostraciones en la Geometría No-Euclídea, la Trigonometría Esférica, el Cálculo Integral y la Teoría de los Números Reales. Fue uno de los primeros en emplear terminología aritmética en problemas de Geometría y estudió algunos aspectos de las secciones cónicas, centrándose en la parábola y la elipse. Un buen número de fórmulas que dedujo, ha servido para el cálculo de superficies y volúmenes de diferentes cuerpos, empleando en ello un proceso muy similar al del "Cálculo Integral". Breve Historia de las Matemáticas: La Edad Media (III)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Demostró que si: P= 3 * 2n-1 – 1 Q= 3 * 2n – 1 R= 9 * 22n-1 – 1 Son números primos, entonces: 2nPQ y 2n R Son números amigos Al-Batani(858–929), fue astrónomo, astrólogo y matemático. Nació en Harrán, en la actual Turquía. Trabajó en ar-Raqqah (Siria) y en Damasco. Su obra se centra en el estudio de las relaciones matemáticas trigonométricas, entre ellas se destaca: Proporcionó una solución para la ecuación sin x = a cos x, deduciendo Utilizó la idea de al-Marwazi de las tangentes, para resolver ecuaciones con tangentes y cotangentes, compilando tablas con sus valores. Se dio cuenta que el punto que Ptolomeo había indicado como afelio se desplazaba, calculando la velocidad con bastante exactitud. También determinó el momento del equinoccio con un error menor a las dos horas y calculó con muy poco error el ángulo que forma el eje de la Tierra con su plano de rotación. Año solar como: 365 días, 5 horas, 46 minutos y 24 segundos

  4. Abul'-Wafa(940-998), matemático y astrónomo. Nació en Buzhgan (Irán). Su contribución a las Matemáticas esta enfocado principalmente en el campo de la trigonometría. Introdujo la función tangente y mejoró los métodos para calcular las tablas de la trigonometría, ideando un método nuevo de calcular las tablas del seno. Sus tablas trigonométricas son exactas a 8 lugares decimales. y desarrolló maneras de solucionar algunos problemas de triángulos esféricos. Estableció las identidades trigonométricas: Dedujo la fórmula del seno para la trigonometría esférica: Escribió Al-kuttab del ilayh del yahtaj de kitab fi ma el 'al-hisab mínimo wa'l-ummal del ilm, libro necesario para la ciencia de la aritmética para los escribanos y los hombres de negocios. Breve Historia de las Matemáticas: La Edad Media (IV)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Estudió los movimientos de la Luna. Por su trabajo, en el año 1970 se decidió llamar Abul'-Wafa, en su honor, a un cráter situado en el lado oscuro de la Luna. Al-Karaji (953 – 1029), fue un matemático e ingeniero persa. Vivió y trabajó la mayor parte de su vida en Bagdad, Sus tres trabajos importantes son Al-Badi 'fi'l-hisab (‘maravilla en el cálculo’), Al-Fakhrifi'l-jabrwa'l-muqabala (‘glorioso en álgebra’), y Al-Kafifi'l-hisab (‘suficiente en el calculo’). Es el primero que libera el álgebra de las operaciones geométricas, sustituyéndolas por el tipo de operaciones que constituyen la base del álgebra moderna. En sus trabajos sobre álgebra, dio las reglas de las operaciones aritméticas con polinomios. Se cree que es el primero que introdujo la teoría del cálculo algebraico. Al-Karaji investigó sobre los coeficientes binomiales y el triángulo de Pascal. También hizo uso el método de inducción para probar sus resultados. Todavía se reconocen hoy por sus trabajos sobre la tabla de coeficientes binomiales, su ley de la formación.

  5. Abu NasrMansur(960-1036) fue un matemático persa, conocido por descubrir el teorema del seno. Nació en Gilán, dentro de una de las familias gobernantes de la región. Su posición dentro de la esfera política era equivalente a la de un príncipe. Fue maestro de Al-Biruni, de quien también sería colega en su trabajo como matemático. Juntos fueron responsables de grandes descubrimientos en las matemáticas. Aunque la mayor parte del trabajo de Abu NasrMansur se centraba en las matemáticas, también escribió algunos trabajos sobre astronomía. En matemáticas, realizó importantes obras sobre trigonometría, desarrolladas a partir de los escritos de Ptolomeo. Además, preservó los trabajos de Menelao de Alejandría, y reescribió muchos de los teoremas griegos. Abu NasrMansur murió cerca de la ciudad de Gazna (Afganistán). Breve Historia de las Matemáticas: La Edad Media (V)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Alhazen (965–1040) es considerado creador del método científico, fue matemático, físico y astrónomo. Realizó importantes contribuciones a los principios de la Óptica y a la concepción de los experimentos científicos. Se lo considera el padre de la Óptica por sus trabajos y experimentos con lentes, espejos, reflexión y refracción. Escribió el primer tratado amplio sobre lentes, donde describe la imagen formada en la retina humana debido al cristalino. Alhazen es considerado uno de los físicos más importantes de la Edad Media. En sus trabajos sobre la óptica geométrica, al contrario que Ptolomeo, defendía la hipótesis de que la luz procedía del Sol y que los objetos que no poseen luz propia, lo único que hacen es reflejarla, por lo que se pueden ver. Realizó también estudios sobre la reflexión y refracción de la luz, el origen del arco iris y el empleo de las lentes. Asimismo, defendió la idea de la finitud del espesor de la atmósfera terrestre

  6. Breve Historia de las Matemáticas: La Edad Media (VI)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Al-Biru (973 – 1048) fue matemático, astrónomo, físico, filósofo, viajero, historiador y farmacéutico persa, uno de los intelectuales más destacados del mundo islámico. Escribió cerca de 150 obras sobre historia, astronomía, astrología, matemáticas y farmacología. A la edad de 17 años fue capaz de calcular la latitud de Kath, gracias a la altitud máxima alcanzada por el sol, y con 22 años ya había escrito varias obras cortas sobre la ciencia de la cartografía que incluían un método para la proyección de un hemisferio en un plano. A los 27 años, sus escritos incluían temas como el estudio del paso del tiempo (cronología) y los astrolabios, el sistema decimal, la astrología y la historia. También calculó el radio de la esfera terrestre con un error inferior al 1% de su valor medio actualmente aceptado; el mundo occidental no llegó a tener un resultado equivalente hasta el siglo XVI. • Hizo contribuciones en campos de las Matemáticas, tales como: • La aritmética teórica y práctica • La suma de series • El análisis combinatorio • La regla de tres • Los números irracionales • La teoría de las razones (cocientes) numéricas • Definiciones algebraicas • Los método de resolución de ecuaciones algebraicas • La geometría • Los teoremas de Arquímedes • La trisección del ángulo • Gnomónica Ilustración de un eclipse lunar

  7. Omar Jayam, (1048-1131), matemático, astrónomo y poeta, nacido en Nishapur (Irán). Es uno de los intelectuales más prominentes de los siglos XI y XII. Entre su producción científica destaca sus aportaciones astronómicas, especialmente la corrección del sistema del calendario (el calendario Jalali, con un error de un día cada 3770 años, precursor del actual calendario persa), similar a la reforma gregoriana que se impuso en Occidente entre el siglo XVI y XVII, y sus tablas astronómicas y los desarrollos matemáticos, incluyendo la geometría, en la que fue un precursor de la Geometría No-Euclídea, y el álgebra. Investigó sobre las ecuaciones, y a él se debe el que la incógnita de las mismas se llame x. Breve Historia de las Matemáticas: La Edad Media (VII)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Al-Mutamínfue rey de la Taifa de Zaragoza entre 1081 y 1085, en su momento de máximo esplendor. Fue asimismo un rey erudito, protector de las ciencias, de la filosofía y de las artes. Un ejemplo de rey sabio, conocedor de las matemáticas, disciplina de la que escribió un tratado, el Libro de perfección, la astrología y la filosofía, que continuó la labor de su padre, creando una corte de sabios intelectuales que tenía como marco el bello palacio de la Aljafería, llamado, en esta época, el «palacio de la alegría». El Libro de la perfección y de las apariciones ópticas trata los números irracionales, secciones cónicas, la cuadratura del segmento parabólico, volúmenes y áreas de varios cuerpos geométricos o el trazado de la tangente de una circunferencia, entre otros problemas matemáticos. A Al-Mutamán se debe la primera formulación conocida del Teorema de Giovanni Ceva. Sea ABC un triángulo y D, E, F son puntos en los lados BC, CA y AB. Se dibujan líneas rectas AD, BE y CF. Esas tres líneas se intersecan en un punto si y solo si 

  8. Al-Tūsī (1135 - 1213) fue un matemático persa de la época dorada del islam. Enseñó diversos temas de matemáticas que incluyen la ciencia de los números, las tablas astronómicas y de la astrología, en Aleppo y Mosul, adquiriendo una excelente reputación como profesor. Escribió algunos tratados de álgebra, donde recoge lo que conocemos como método de Ruffini - Horner o método de la aproximación de la raíz de una ecuación cúbica. Aunque este método fue utilizado anteriormente por los matemáticos árabes para encontrar aproximaciones a la raíz enésima de un entero, Tusi es el primero en aplicar el método para resolver ecuaciones generales de este tipo. En su Al Mu'Adalat, Tusi encontró soluciones numéricas y algebraicas de ecuaciones cúbicas y fue el primero en descubrir la derivada de polinomios cúbicos, un resultado importante en el cálculo diferencial. Breve Historia de las Matemáticas: La Edad Media (VIII)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Leonardo de Pisa, (1170-1250), también llamado Fibonacci, fue un matemático italiano, famoso por haber difundido en Europa el sistema de numeración indo-arábigo actualmente utilizado, el que emplea notación posicional (de base 10, o decimal) y un dígito de valor nulo: el cero; y por idear la sucesión de Fibonacci. Los números de Fibonacciquedan definidos por las ecuaciones  La sucesión deFibonacci Consciente de la superioridad de los numerales árabes, Fibonacci viajó a través de los países del Mediterráneo para estudiar con los matemáticos árabes más destacados de ese tiempo, regresando cerca de 1200. En 1202, a los 32 años de edad, publicó lo que había aprendido en el LiberAbaci. Este libro mostró la importancia del nuevo sistema de numeración aplicándolo a la contabilidad comercial, conversión de pesos y medidas, cálculo, intereses, cambio de moneda, y otras numerosas aplicaciones. En estas páginas describe el cero, la notación posicional, la descomposición en factores primos, los criterios de divisibilidad. El libro fue bien recibido en la Europa ilustrada, y tuvo un impacto profundo en el pensamiento matemático europeo.

  9. Aportaciones a las Matemáticas de Leonardo de Pisa LiberAbaci. Fue escrito en 1202 y revisado y considerablemente aumentado en 1228. Se divide en quince capítulos. Un capítulo importante está dedicado a las fracciones graduales,de las que expone las propiedades. En ellas basa una teoría de los números fraccionarios y, después de haberlas introducido en los cálculos de números abstractos, las vuelve un instrumento práctico para la obtención de números concretos. Todas las fracciones se presentan a la manera egipcia, es decir, como suma de fracciones con numeradores unitarios y denominadores no repetidos. La única excepción es la fracción  2/3 que no se descompone. Breve Historia de las Matemáticas: La Edad Media (IX)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Practica Geometriae. Está dividido en siete capítulos en los que aborda problemas de geometría dimensional referente a figuras planas y sólidas. Es la obra más avanzada en su tipo que se encuentra en esa época en Occidente. Flossupersolutionibusquarumdamquestionum ad numerum et ad geometricampertinentium. Comprende quince problemas de análisis determinado e indeterminado de primer grado. Dos de esos problemas habían sido propuestos como desafío a Leonardo por Juan de Palermo, matemático de la corte del emperador Federico II. Carta a Teodoro. Es una simple carta que Leonardo envía a Teodoro, astrólogo de la corte de Federico II. En ella se resuelven dos problemas. El primero es algebraico y consiste en encontrar objetos de diferentes proporciones. El segundo problema es geométrico-algebraico. Se trata de inscribir en un triángulo isósceles un pentágono equilátero que tenga un lado sobre la base del triángulo y otros dos lados sobre los restantes de éste. Lo reduce a una ecuación de segundo grado, dando un valor muy aproximado para el lado del pentágono en el sistema sexagesimal. LiberQuadratorum. Consta de veinte proposiciones. Estas no consisten en una recopilación sistemática de las propiedades de los números cuadrados, sino una selección de las propiedades que llevan a resolver un problema de análisis indeterminado de segundo grado que le fuera propuesto por Teodoro, un matemático de la corte de Federico II.

  10. Breve Historia de las Matemáticas: La Edad Media (X)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Durante el siglo XII, particularmente en Italia y en España, se traducen textos árabes y se redescubren los griegos. Toledo se vuelve un centro cultural y de traducciones; los escolares europeos viajan a España y a Sicilia en busca de literatura científica árabe. incluyendo el Compendio de cálculo por compleción y comparación de al-Khwārizmī, y la versión completa de los Elementos de Euclides, traducida a varios idiomas por Adelardo de Bath, Herman de Carinthia, y Gerardo de Cremona. Gerardo de Cremona Hay un fuerte desarrollo en el área de las matemáticas en el siglo XIV, como la dinámica del movimiento. Thomas Bradwardinpropone que la velocidad se incrementa en proporción aritmética como la razón de la fuerza a la resistencia se incrementa en proporción geométrica, y muestra sus resultados con una serie de ejemplos específicos, pues el logaritmo aún no había sido concebido. Los matemáticos de esta época (tales como los calculatores de MertonCollege, de Oxford), al no poseer los conceptos del cálculo diferencial o de límite matemático, desarrollan ideas alternativas como por ejemplo: medir la velocidad instantánea como la "trayectoria que habría seguido un cuerpo si hubiese sido movido uniformemente con un mismo grado de velocidad con el que es movido en ese instante dado"; o bien: determinar la distancia cubierta por un cuerpo bajo movimiento uniforme acelerado (hoy en día resuelto con métodos de integración). Este grupo, compuesto por Thomas Bradwardine. William Heytesbury, Richard Swineshead y John Dumbleton, tiene como principal éxito la elaboración del teorema de la velocidad media que más tarde, usando un lenguaje cinemático y simplificado, compondría la base de la "ley de la caída de los cuerpos", de Galileo Thomas Bradwardine Nicolás Oresme Nicolás Oresmeen la Universidad de París y el italiano Giovanni di Casali, proveyeron independientemente una demostración gráfica de esta relación. En un comentario posterior a los Elementos, Oresme realiza un análisis más detallado donde prueba que todo cuerpo adquiere, por cada incremento sucesivo de tiempo, un incremento de una cualidad que crece como los números impares. Utilizando el resultado de Euclides que la suma de los números impares son los cuadrados, deduce que la cualidad total adquirida por el cuerpo, se incrementará conforme el cuadrado del tiempo.

  11. Breve Historia de las Matemáticas: La Edad Media (XI)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Li Ye(1192-1279), fue un matemático chino del período de la dinastía Song.En 1248 escribió Espejo marino de las medidas del círculo y en 1259 Nuevos pasos del cálculo. El Espejo marino de las medidas del círculo contiene 170 problemas geométricos ilustrados sobre la base de una figura que él llama yuan cheng tu shi.Algunas de las fórmulas que se mencionan en este texto son muy relevantes y pueden usarse para el cálculo del diámetro de un círculo inscrito en un triángulo o un triángulo inscrito en un círculo, el diámetro de un círculo cuyo centro es un vértice o el diámetro de un círculo tangente a dos lados de un triángulo rectángulo con su centro en el otro lado. Al observar el grado de las ecuaciones, es posible constatar que Li Ye no se limitó solamente a problemas triviales, y denomina el método para resolver ecuaciones método del elemento celestial (tian-yuan shu, donde tian-yuan significa la variable del elemento y shu «método». Este procedimiento es casi idéntico al Algoritmo de Horner. Diagrama original Representación de la ecuación 2x³+15x²+166x-4460=0 ZhuShijie(1270-1330)fue uno de los más eminentes matemáticos chinos. Se sabe poco acerca de su vida, aunque se conservan dos trabajos matemáticos. Su introducción a los estudios matemáticos (1299), es un libro elemental de matemáticas, en el que incluye 260 problemas que explican operaciones de la aritmética y el álgebra. El libro también muestra como medir formas bidimensionales y cuerpos tridimensionales. Su segundo libro, titulado El precioso espejo de los cuatro elementos (1303), es su trabajo más importante. Con este libro Zhu llevó el álgebra china al más alto nivel. Incluye una introducción de su método de los cuatro elementos, que se usa para hablar de cuatro cantidades indeterminadas en una ecuación algebraica. Zhu aclaró también como encontrar raíces cuadradas y desarrolló el conocimiento de las series y las progresiones.

  12. Breve Historia de las Matemáticas: La Edad Media (XII)Autores: Ángel PenalvaCutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Al-Biru(973 – 1048) fue matemático, astrónomo, físico, filósofo, viajero, historiador y farmacéutico persa, uno de los intelectuales más destacados del mundo islámico. Escribió cerca de 150 obras sobre historia, astronomía, astrología, matemáticas y farmacología. A la edad de 17 años fue capaz de calcular la latitud de Kath, gracias a la altitud máxima alcanzada por el sol, y con 22 años ya había escrito varias obras cortas sobre la ciencia de la cartografía que incluían un método para la proyección de un hemisferio en un plano. A los 27 años, sus escritos incluían temas como el estudio del paso del tiempo (cronología) y los astrolabios, el sistema decimal, la astrología y la historia. También calculó el radio de la esfera terrestre con un error inferior al 1% de su valor medio actualmente aceptado; el mundo occidental no llegó a tener un resultado equivalente hasta el siglo XVI. • Hizo contribuciones en campos de las Matemáticas, tales como: • La aritmética teórica y práctica • La suma de series • El análisis combinatorio • La regla de tres • Los números irracionales • La teoría de las razones (cocientes) numéricas • Definiciones algebraicas • Los método de resolución de ecuaciones algebraicas • La geometría • Los teoremas de Arquímedes • La trisección del ángulo • Gnomónica Ilustración de un eclipse lunar

  13. Breve Historia de las Matemáticas: La Edad Media (XII)Autores: Ángel Penalva Cutanda y Josefa Martínez MoncayoTutor: Francisco Martínez González Al-Kashi(1380-1429), fue un astrónomo y matemático persa. Fue llamado también el «segundo Ptolomeo». Nació en Kashan (Irán) y mientras Tamerlán sometía militarmente mediante campañas intensas contra los árabes, Kashi y su familia se hundían en la miseria y la pobreza, de esta manera los viajes entre diversas ciudades pudo hacer de Al-Kashi un estudiante curioso por las ciencias. La suerte de Kashi cambió cuando al fin UlughBeg le invitó a unirse a la gran escuela de enseñanza de Samarcanda, . Kashi escribió un compendio sobre las ciencias y la astronomía entre los años 1410 y 1411, que dedicó a UlughBeg. Este compendio se fundamenta en las tablas del persa Nasir al-DinTusi. En 1424 elaboró un tratado sobre la circunferencia, donde calculó el número pi con dieciséis posiciones decimales (π≈3,1415926535897932). Esta cifra no fue nunca antes calculada con tanta precisión y puede decirse que es casi 200 años antes de que el matemático alemán Ludolph van Ceulen pudiera superar a Kashi con 20 cifras decimales. La obra de Al-Kashi más impresionante es La llave de la aritmética que llegó a completar en 1427, se trata de una obra dedicada a la enseñanza y que fue empleada con profusión en la escuela de Samarcanda no sólo para introducir en la astronomía sino que además en otras áreas como la contabilidad, arquitectura, etc.

More Related