1.14k likes | 2.07k Views
Kebisingan Industri. Definisi dan pengertian. Bising = suara-suara yang tidak dikehendaki Definisi secara ilmiah = sensasi yang diterima telinga sebagai akibat fluktuasi tekanan udara ‘superimposing’ tekanan atmosfir/udara yang steady
E N D
Definisi dan pengertian • Bising = suara-suara yang tidak dikehendaki • Definisi secara ilmiah = sensasi yang diterima telinga sebagai akibat fluktuasi tekanan udara ‘superimposing’ tekanan atmosfir/udara yang steady • Bising = sejenis vibrasi/energi yang dikonduksikan dalam media udara, cairan, padatan, tidak tampak, dan dapat memasuki telinga serta menimbulkan sensasi pada alat dengar
Inside NOISE • What is noise? • Definition, energy conducted and sensed, properties: intensity/pressure, frequency, exposure, • Why unwanted? • Health Effect, age, psychological: annoyed, concentration, rest/relax problem, communication annoyance, physiological: blood, heart, hearing loss, nausea, muscle control, acoustic trauma (permanent) vs temporary, • Who are susceptible? • Esp. Industrial workers, determining factors: sensitivity, age, • How to evaluate & control?
What is noise? Definisi: • Suara-suara yang tidak dikehendaki (for Who? Why?) • Suara: sensasi yang diterima telinga sebagai akibat fluktuasi tekanan udara terhadap tekanan udara yang stabil. • Telinga akan merespons fluktuasi-fluktuasi kecil tersebut dengan sensitivitas yang sangat besar.
Karakteristik bising • Intensitas/tekanan (sound pressure/intensity) • Frekuensi • Durasi eksposur terhadap bising • Ketiga karakteristik diperlukan karena: • Semakin keras suara, semakin tinggi intensitasnya • Frekuensi tinggi lebih berbahaya terhadap kemampuan dengar. Telinga manusia lebih sensitif terhadap frekuensi tinggi • Semakin lama durasi eksposur semakin besar kerusakan pada mekanisme pendengaran
Jenis Bising • Tergantung pada durasi dan frekuensi • Steady wide band noise, bising yang meliputi suatu jelajah frekuensi yang lebar (bising dalam ruang mesin) • Steady narrow band noise, bising dari sebagian besar energi bunyi yang terpusat pada beberapa frekuensi saja, contoh gergaji bundar. • Impact noise, kejutan singkat berulang, contoh riveting • Intermitten noise, bising terputus, contoh lalu lintas pesawat
Tekanan = Sound Pressure • Manusia dapar mendengar suara pada tekanan antara 0,0002 dynes/cm2 (ambang dengar/threshold of hearing) sampai 2000 dynes/cm2 range besar sehingga satuan yang dipakai dB (decibel): logaritmik • Dinyatakan dalam decibel (dB) yang dilengkapi skala A, B, dan C sesuai dengan berbagai kegunaan • Skala A digunakan karena merupakan response yang paling cocok dengan telinga manusia (peka terhadap frekuensi tinggi) • Skala B dan C untuk evaluasi kebisingan mesin, dan cocok untuk kebisingan frekuensi rendah
Intensitas • Laju aliran energi tiap satuan luas yang dinyatakan dalam desibell (dB) – Alexander Graham Bell- • dB adalah merupakan satuan yang dihasilkan dari perhitungan yang membandingkan suatu tekanan suara yang terukur terhadap suatu tekanan acuan (sebesar 0,0002 dyne/cm2). • B = log (int.terukur/int.acuan) untuk mendapatkan angka yang lebih akurat ditentukan dengan angka kelipatan 10 (desi) • Intensity level dB=10 Log (IT/IA) • Sound pressure level (tekanan bunyi) = 20 log (IT/IA), karena intensitas sebanding dengan kuadrat tekanan bunyi.
Ruang kelas: ?dB • Rumah • Restauran • Berbisik • Berteriak • Jet plane
The decibel • dB = 10 log10 (I1/I0) I = Intensitas dB = 20 log10 (P1/P0) P= Tekanan = 0,0002 dynes/cm2 SP (microbar) SPL (dB) Ratio Intensitas 0,0002 0 100 0,002 20 102 Jadi bila SP berubah 10x, maka dB bertambah ? x
Frekuensi • Adalah jumlah getaran dalam tekanan suara per satuan waktu (Hertz atau cycle per detik), frekuensi dipengaruhi ukuran, bentuk dan pergerakan sumber, pendengaran normal orang dewasa dapat menangkap bunyi dengan frekuensi 20-15.000 Hz.
Frekuensi • Dibagi dalam 8 octaf (octave bands), 37.5, 75, 150, 300, 600, 1200, 2400, 4800, 9600 Hz • Telinga manusia bereaksi beda terhadap berbagai frekuensi • Kebisingan ‘rata-rata’ mencakup seluruh taraf kebisingan dari setiap frekuensi dihitung Leq Leq = ekuivalen noise level/ekuivalen energi level Leq = 10 log10 (Σ 10 Lpi/10)
Satuan (Konversi) • 1bar=105Pa=105N/m2 • =105.105dyne/104cm2 • =106dyne/cm2 atau • 1microbar = 1 dyne/cm2
Sumber > 1….. • dB=L=20 log(P1/P2)=10 log(P1/P2)2 • L/10= log(P1/P2)2 • 10L/10= 10log(P1/P2)^2=(P1/P2)2 • L=10 log(P1/P2)2 • =10 log 10L/10(satu sumber) • L =10 log (Σ10Li/10) (sumber banyak) • =10 log (10L1/10+ 10L2/10+…)
Sumber > 1….. (Contoh) • =10 log (Σ10Li/10) (banyak sumber) • =10 log (10L1/10+ 10L2/10+…)
Satuan (Konversi) • 1bar=105Pa=105N/m2 • =105.105dyne/104cm2 • =106dyne/cm2 atau • 1microbar = 1 dyne/cm2
Sumber > 1….. • dB=L=20 log(P1/P2)=10 log(P1/P2)2 • L/10= log(P1/P2)2 • 10L/10= 10log(P1/P2)^2=(P1/P2)2 • L=10 log(P1/P2)2 • =10 log 10L/10(satu sumber) • L =10 log (Σ10Li/10) (sumber banyak) • =10 log (10L1/10+ 10L2/10+…)
Sumber > 1….. (Contoh) • =10 log (Σ10Li/10) (banyak sumber) • =10 log (10L1/10+ 10L2/10+…)
3 2,5 2 Decibel yang ditambahkan pada tingkat kebisingan lebih tinggi 1,5 1 0,5 2 4 6 8 10 12 14 Perbedaan antara 2 tingkat bising, dB(A) Kebisingan dari 2 sumber
Why unwanted? Health Effect, age, psychological: annoyed, concentration, rest/relax problem, communication annoyance, physiological: blood, heart, hearing loss, nausea, muscle control, acoustic trauma (permanent) vs temporary,
Efek bising pada manusia • Psikologis, terkejut, mengganggu dan memutuskan konsentrasi, tidur dan saat istirahat • Fisiologis, seperti menaikkan tekanan darah dan detak jantung, mengurangi ketajaman pendengaran, sakit telinga, mual, kendali otot terganggu, dll. • Gangguan komunikasi yang mempengaruhi kenyamanan kerja dan keselamatan.
Interference with communication by speech • When background or ambient noise levels are sufficiently high enough, the background noise can mask the sound levels of speech that wish to be heard. • Restaurants can often be classic examples of excessive noise interference due to lack of sufficient quality or quantity of sound absorbing materials that prevent excessive noise buildup. • Diners have to speak louder and louder to be heard and in doing so compete with one another, thereby increasing the sound levels to even greater levels. Appropriate acoustical treatment will prevent the reflected noise buildup and significantly reduce the necessity for diners to speak louder to enjoy conversations with one another.
Gangguan pendengaran • Pemaparan pada suara tinggi dan periode/durasi yang lama akan menyebabkan sel syaraf pendengar dan rambut pada corti over aktif sehingga menimbulkan kehilangan pendengaran permanen
Alat ukur • Sound level meter, mencatat keseluruhan suara yang dihasilkan tanpa memperhatikan frekuensi yang berhubungan dengan bising total (30-130 d) – (20-20.000Hz) • Sound level meter dengan octave band analyzer, mengukur level bising pada berbagai batas oktaf di atas range pendengaran manusia dengan mempergunakan filter menurut oktaf yang diinginkan (narrow band analyzers untuk spektrum sempit 2-200 Hz)
NOISE MEASUREMENT KIT NOISE KALIBRATOR SOUND LEVEL METER NOISE DOSIMETER
PENGUKURAN PADA PEKERJA DOSEBADGER
Pengukuran akibat bising Untuk mengevaluasi akibat pemaparan terhadap kehilangan pendengaran, kenyamanan, interferensi komunikasi dan mengumpulkan informasi untuk pengontrolan.
How Does Excessive Noise Damage Your Ears? • Microscopic hair cells of the cochlea are exposed to intense noise over time • Hair cells become fatigued and less responsive, losing their ability to recover. • Damage becomes permanent resulting in noise-induced permanent threshold shift. • Risk of Hearing Loss • Estimated Risk of Incurring Material Hearing Impairment as a Function of Average Daily Noise Exposure Over a 40-year Working Lifetime (source: NIOSH) • Average Exposure 90 dBA 29% • Average Exposure 85 dBA 15% • Average Exposure 80 dBA 3%
Audiometric test • Current OSHA Standards • 1926.52 Occupational Noise Exposure • TABLE D-2 - PERMISSIBLE NOISE EXPOSURES
What Is The Purpose of Having a Hearing Test on a Regular Basis? • An audiometric testing program is used to track your ability to hear over time. • Baseline and annual • Test records provide the only data that can be used to determine whether the program is preventing noise-induced permanent threshold shifts. It is an integral part of the hearing conservation program. • Case Study 1. Teenage Girl From the American Academy of Family Physicians website, Rabinowitz article
FIGURE 1. Audiogram findings in the patient in case 1. The area below the curves represents sound levels that the patient could still hear. (X = left ear; O = right ear)
Case Study 1 Conclusion • "Temporary threshold shift" example • Common in persons exposed to high noise • Represents transient hair cell dysfunction • Complete recovery can occur • Repeated episodes of such shifts causes permanent threshold shifts because hair cells in the cochlea are progressively lost.
Case Study 2 Conclusion • Noise Induced Hearing Loss • Speech discrimination and social function interference • Difficulty in perceiving and differentiating consonant sounds • Sounds such as a baby crying or a distant telephone ringing, may not be heard at all. • Tinnitus • Common symptom of noise overexposure • Further interferes with hearing acuity, sleep and concentration. • These impairments have been associated with depression and an increased risk of accidents.
Damage risk criteria • Variation in individual susceptibility • The total energy of the sound • The frequency distribution of the sound • Other characteristics of the noise exposure, such as whether it is continuous, intermittent, or made up of a series of impacts • The total daily time of exposure • The length of employment in the noise environment.
Noise control • A source radiating sound energy • A path along which the sound energy travels • A receiver such as the human ear