1 / 19

RIANI WIDIASTUTI , S.Pd KELAS X TRIGONOMETRI

RIANI WIDIASTUTI , S.Pd KELAS X TRIGONOMETRI. RIANI WIDIASTUTI , S.Pd KELAS X TRIGONOMETRI. NEXT. MENU :. PERBANDINGAN TRIGONOMETRI SUDUT – SUDUT PADA SEMUA KUADRAN. R UMUS PERBANDINGAN TRIGONOMETRI UNTUK SUDUT – SUDUT BERELASI.

percy
Download Presentation

RIANI WIDIASTUTI , S.Pd KELAS X TRIGONOMETRI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RIANI WIDIASTUTI , S.Pd KELAS X TRIGONOMETRI RIANI WIDIASTUTI , S.Pd KELAS X TRIGONOMETRI NEXT

  2. MENU : PERBANDINGAN TRIGONOMETRI SUDUT – SUDUT PADA SEMUA KUADRAN RUMUS PERBANDINGAN TRIGONOMETRI UNTUK SUDUT – SUDUT BERELASI RUMUS PERBANDINGAN TRIGONOMETRI UNTUK SUDUT – SUDUT LAINNYA MERUBAH KEDUDUKAN TITIK DARI KOORDINAT KUTUB DALAM KOORDINAT KARTESIUS MERUBAH KEDUDUKAN TITIK DARI KOORDINAT KARTESIUS DALAM KOORDINAT KUTUB Identitastrigonometri

  3. PERBANDINGAN TRIGONOMETRI SUDUT – SUDUT PADA SEMUA KUADRAN αberadapadakuadran 1 ( o °< α < 90°) maka : Sin α = cosec α = cosα = sec α = tan α = cot α = r y α x Contohsoal : Diketahui sin α = 4/5 padakuadran I tentukannilai cot αdancosα Jawab : Cos α = 3/5 cot α = 3/4 5 4 3

  4. αberadapadakuadran II ( 90 °< α < 180°) maka : Sin α = cosec α = cosα = sec α = tan α = cot α = r y α - x Contohsoal : Diketahuicosα = - 3/5 padakuadran II tentukannilai cot αdan cosec α Jawab : Cot α = - 3/4 cosec α = 5/4 5 4 - 3

  5. - x αberadapadakuadran III ( 180 °< α < 270°) maka : Sin α = cosec α = cosα = sec α = tan α = cot α = α - y r Contohsoal : Diketahuicosα = - 2/3 padakuadran III tentukannilai sin αdan tan α - 2 Jawab : Sin α = - /3 tan α = / 2 3

  6. x αberadapadakuadran IV ( 270°< α < 360°) maka : Sin α = cosec α = cosα = sec α = tan α = cot α = α - y r Contohsoal : Diketahuicosα = t padakuadran IV tentukannilai sin αdan sec α t 1 Jawab : Sin α = sec α = 1/t

  7. TIME OUTSENAM HOME

  8. RUMUS PERBANDINGAN TRIGONOMETRI UNTUK SUDUT – SUDUT BERELASI Sin ( 90 - α ) = = cosα cot ( 90 - α ) = = tan α cos ( 90 - α ) = = sin α cosec ( 90 - α ) = = sec α Tan ( 90 - α ) = = cot α sec ( 90 - α ) = = cosec α r y α x Sin ( 90 + α ) = = cosα cot ( 90 + α ) = - = - tan α cos ( 90 + α ) = - = - sin α cosec ( 90 + α ) = = sec α Tan ( 90 + α ) =- = - cot α sec ( 90 + α ) = - = - cosec α r y α x

  9. r y y - x α x Sin ( 180 - α ) = = sin α cot ( 180 - α ) = - = - cot α cos ( 180 - α ) = - = - cosα cosec ( 180 - α ) = = cosec α Tan ( 180 - α ) = - = - tanα sec ( 180 - α ) = - = - sec α r y - x α x - y Sin ( 180 + α ) = - = - sin α cot ( 180 + α ) = = cotanα cos ( 180 + α ) = - = - cosα cosec ( 180 + α ) = - = - cosec α Tan ( 180 + α ) = = tan α sec ( 180 + α ) = - = - sec α

  10. TIME OUTBERNYANYI HOME

  11. r y - x α x - y Sin ( 270 - α ) = - = - cosα cot ( 270 - α ) = = tan α cos ( 270 - α ) = - = - sin α cosec ( 270 - α ) = = - sec α Tan ( 270 - α ) = = cotα sec ( 270 - α ) = - = - cosec α

  12. Sin ( 270 + α ) = - cosα cot ( 270 + α ) = - tan α cos ( 270 + α ) = sin α cosec ( 270 + α ) = - sec α Tan ( 270 + α ) = - cotanα sec ( 270 + α ) = cosec α Sin ( 360 - α ) = - sin α cot ( 360 - α ) = - cot α cos ( 360 - α ) = cosα cosec ( 360 - α ) = - cosec α Tan ( 360 - α ) = - tan α sec ( 360 - α ) = sec α

  13. LATIHAN : Hitunglahnilaidari : a. Sin 315° b. Cos 210° c. Tan 240° 2. Sederhanakanbentukberikut : a. b. 3. Diketahui sin 40°= n . Tentukannilaidari tan 230° dan cot 320° BACK

  14. Rumus – rumusperbandingantrigonometriuntuksudut ( - α ) Sin ( - α ) = - sin α cot ( - α ) = - cot α cos ( - α ) = cosα cosec ( - α ) = - cosec α Tan ( - α ) = - tan α sec ( - α ) = sec α Rumus – rumusperbandingantrigonometriuntuksudut ( n. 360° - α ) Sin ( n. 360° - α ) = - sin α cot ( n. 360° - α ) = - cot α cos ( n. 360° - α ) = cosα cosec (n. 360° - α ) = - cosec α Tan ( n. 360° - α ) = - tan α sec ( n. 360° - α ) = sec α

  15. Rumus – rumusperbandingantrigonometriuntuksudut ( n. 360° + α ) Sin ( n. 360° + α ) = sin α cot ( n. 360° + α ) = cot α coos ( n. 360°+α ) = cosα cosec (n. 360° + α ) = cosec α Tan ( n. 360° + α ) = tan α sec ( n. 360° + α ) = sec α BACK

  16. MERUBAH KEDUDUKAN TITIK DARI KOORDINAT KUTUB DALAM KOORDINAT KARTESIUS Cos α = x/r x = r. Cos α Sin α = y/r y = r. sin α r y Jadi A ( r , α ° ) = A ( r. cosα° , r. sin α° ) α x Contoh : 1. A ( 10 , 60° ) x = r. Cos α° y = r . sin α°jadi A ( 5, 5 ) = 10 . Cos 60° = 10 . Sin 60° = 10. ½ = 10 . ½ = 5 = 5 Contoh : 2. B ( 20 , 120° ) x = r. Cos α° y = r . sin α°jadi B ( - 10 , 10 ) = 20 . Cos 120° = 20 . Sin 120° = 20 . ( - ½ ) = 20 . ½ = - 10 = 10 BACK

  17. MERUBAH KEDUDUKAN TITIK DARI KOORDINAT KARTESIUS DALAM KOORDINAT KUTUB x² + y² = r² r = Tan α = y/x αdapatditentukan r y Jadi A ( x , y ) = A ( , arc tan y/x ) α x Contoh : 1. A ( 5 , 5 ) Dikuadran 1 x² + y² = r² ( 5 )² + 5² = r² 75 + 25 = r² = r² r = 10 jadi A ( 10 , 30º ) dikuadran I Contoh : 2. A ( 5 , - 5 ) Dikuadran 1V x² + y² = r² ( 5 )² + ( - 5) ² = r² 75 + 25 = r² = r² r = 10 jadi A ( 10 , 330º ) dikuadran IV

  18. LATIHAN SOAL : Nyatakandalamkoordinatkartesius a. A ( 10 , 315° ) b. B ( 5 , 225° ) 2. Nyatakandalamkoordinatkutub a. A ( - 1 , -1 ) b. B ( - 8 , 8 ) BACK

  19. IDENTITAS TRIGONOMETRI Tan A = 5. cos²A + sin²A = 1 2. Cot A = 6. 1 + tan²A = sec²A Sin A = 7. 1 + cot²A = cosec²A 4. cos A = 8. Tan² A = Contoh : Buktikan Cos²A – sin²A = 2 cos²A- 1 5. Jika p – q = cos A = sin A maka p² + q² = 1 2. Cos²A – sin²A = 1 – 2sin²A 3. Sin A . Cot A = cos A 4. = cosec A + cot A BACK

More Related