1 / 26

EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005

EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. MOSFET circuit parameters. Estimating LAMBDA. L = Ch. L. [m] W = Ch. W. [m] AD = Drain A [m 2 ] AS = Source A[m 2 ] NRD, NRS = D and

phyre
Download Presentation

EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EE5342 – Semiconductor Device Modeling and CharacterizationLecture 28 - Spring 2005 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. MOSFET circuitparameters

  3. Estimating LAMBDA

  4. L = Ch. L. [m] W = Ch. W. [m] AD = Drain A [m2] AS = Source A[m2] NRD, NRS = D and S diff in squares M = device multiplier SPICE mosfet Model Instance CARM*, Ch. 4, p. 290

  5. SPICE mosfet model levels • Level 1 is the Schichman-Hodges model • Level 2 is a geometry-based, analytical model • Level 3 is a semi-empirical, short-channel model • Level 4 is the BSIM1 model • Level 5 is the BSIM2 model, etc.

  6. SPICE ParametersLevel 1 - 3 (Static)

  7. SPICE ParametersLevel 1 - 3 (Static) * 0 = aluminum gate, 1 = silicon gate opposite substrate type, 2 = silicon gate same as substrate.

  8. SPICE ParametersLevel 1 - 3 (Q & N)

  9. Level 1 Static Const.For Device Equations Vfb = -TPG*EG/2 -Vt*ln(NSUB/ni) - q*NSS*TOX/eOx VTO = as given, or = Vfb + PHI + GAMMA*sqrt(PHI) KP = as given, or = UO*eOx/TOX CAPS are spice pars., technological constants are lower case

  10. Level 1 Static Const.For Device Equations b = KP*[W/(L-2*LD)] = 2*K, K not spice GAMMA = as given, or = TOX*sqrt(2*eSi*q*NSUB)/eOx 2*phiP = PHI = as given, or = 2*Vt*ln(NSUB/ni) ISD = as given, or = JS*AD ISS = as given, or = JS*AS

  11. Level 1 Static Device Equations vgs < VTH, ids = 0 VTH < vds + VTH < vgs, id = KP*[W/(L-2*LD)]*[vgs-VTH-vds/2] *vds*(1 + LAMBDA*vds) VTH < vgs < vds + VTH, id = KP/2*[W/(L-2*LD)]*(vgs - VTH)^2 *(1 + LAMBDA*vds)

  12. n-channel enhancementMOSFET in ohmic region 0< VT< VG e- channel ele + implant ion Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ n+ e-e- e- e- e- ++++++++++++ Depl Reg p-substrate Acceptors VB < 0

  13. Subthreshold conduction • Below O.S.I., when the total band-bending < 2|fp|, the weakly inverted channel conducts by diffusion like a BJT. • Since VGS>VDS, and below OSI, then Na>nS >nD, and electr diffuse S --> D Electron concentration at Source Concentration gradient driving diffusion

  14. Subthreshold current data Figure 10.1** Figure 11.4*

  15. Mobility variationdue to Edepl Figures 11.7,8,9*

  16. Velocity saturationeffects Figure 11.10*

  17. SPICE ParametersLevel 2

  18. SPICE ParametersLevel 2 & 3

  19. Level 2 StaticDevice Equations Accounts for variation of channel potential for 0 < y < L For vds < vds,sat = vgs - Vfb - PHI + g2*[1-sqrt(1+2(vgs-Vfb-vbs)/g2] id,ohmic = [b/(1-LAMBDA*vds)] *[vgs - Vfb - PHI - vds/2]*vds -2g[vds+PHI-vbs)1.5-(PHI-vbs)1.5]/3

  20. Level 2 StaticDevice Eqs. (cont.) For vds > vds,sat id = id,sat/(1-LAMBDA*vds) where id,sat = id,ohmic(vds,sat)

  21. Level 2 StaticDevice Eqs. (cont.) Mobility variation KP’ = KP*[(esi/eox)*UCRIT*TOX /(vgs-VTH-UTRA*vds)]UEXP This replaces KP in all other formulae.

  22. SPICE ParametersLevel 3

  23. IS " 891.8a" BF " 113.6 " NF " 1.044 " VAF " 83.50 " IKF " 13.45m" ISE " 20.40f" NE " 1.772 " BR " 2.270 " NR " 1.013 " VAR " 22.92 " IKR " 2.000m" ISC " 537.6f" NC " 1.675 " RB " 1.233K" IRB " 1.000u" RBM " 151.8 " RE " 2.560 " RC " 26.00 " CJE " 2.344p" VJE " 762.0m" MJE " 344.9m" CJC " 1.234p" VJC " 570.8m" MJC " 347.6m" CJS " 100.4f" VJS " 566.0m" MJS " 267.0m" Project 2 Parameter Values Extracted

  24. IS " 890.9a" BF " 123.7 " NF " 1.043 " VAF " 86.04 " IKF " 14.33m" ISE " 28.54f" NE " 1.878 " BR " 2.657 " NR " 1.012 " VAR " 21.25 " IKR " 6.470m" ISC " 537.6f" NC " 1.675 " RB " 1.233K" IRB " 986.9n" RBM " 122.2 " RE " 2.831 " RC " 11.71 " CJE " 2.344p" VJE " 762.0m" MJE " 344.9m" CJC " 1.234p" VJC " 570.8m" MJC " 347.6m" CJS " 100.4f" VJS " 566.0m" MJS " 267.0m" Project 2 Optimized Parameter Values

  25. IS " 891.0a" BF " 123.0 " NF " 1.043 " VAF " 86.95 " IKF " 14.91m" ISE " 28.86f" NE " 1.876 " BR " 2.345 " NR " 1.012 " VAR " 23.45 " IKR " 23.45m" ISC " 1.095p" NC " 1.875 " RB " 1.234K" IRB " 987.0n" RBM " 123.0 " RE " 2.345 " RC " 5.678 " CJE " 2.345p" VJE " 765.4m" MJE " 345.6m" CJC " 1.234p" VJC " 567.8m" MJC " 345.6m" CJS " 100.4f" VJS " 566.8m" MJS " 269.6m" Project 2 Parameter Values Used for Data

  26. References • CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, 1995. • M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, 1993. • M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986. • Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997

More Related