1 / 31

HŐKEZELÉSI TECHNOLÓGIÁK SZÁMÍTÓGÉPES TERVEZÉSE

HŐKEZELÉSI TECHNOLÓGIÁK SZÁMÍTÓGÉPES TERVEZÉSE. Dr. Frigyik Gábor egyetemi docens Miskolci Egyetem Mechanikai Technológiai Tanszék. HEFOP - 3.3.1 - 2004 - 06 - 0012. TERMOKÉMIAI KEZELÉS. Acélok felhasználói tulajdonsága függ: - kémiai összetételtől

qamra
Download Presentation

HŐKEZELÉSI TECHNOLÓGIÁK SZÁMÍTÓGÉPES TERVEZÉSE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HŐKEZELÉSI TECHNOLÓGIÁK SZÁMÍTÓGÉPES TERVEZÉSE Dr. Frigyik Gábor egyetemi docens Miskolci Egyetem Mechanikai Technológiai Tanszék HEFOP - 3.3.1 - 2004 - 06 - 0012

  2. TERMOKÉMIAI KEZELÉS Acélok felhasználói tulajdonsága függ: - kémiai összetételtől - maradó fesz nagyságától és elosztásától De ezek is kölcsönhatásban vannak Pl: - szövetszerkezet változás - fajtérfogatváltozás -Feszültség - húzó fesz. segíti az ausztenit bomlását - nyomó fesz. nehezíti az ausztenit bomlását Ezek a tényezők legegyszerűbben „Hőkezeléssel” változtathatók Hőkezelés csoportosítása: (milyen térfogatra terjed ki a tulajdonság változtatás) - térfogati (cél) - felületi hőkezelések

  3. TERMOKÉMIAI KEZELÉS Sok esetben az igénybevétel olyan, hogy - a felület kopásnak - a mag dinamikus igénybevételnek van kitéve Megoldás: keresztmetszetben heterogén szerkezet kell Lehetőségek - felületi réteg fémtani állapotának változtatása ( pl.: görgőzés, sörétezés, edzés) - felületi rétegben megváltoztatjuk a kémiai összetételt és fémtani állapotot ( Ez a felületötvöző vagy termokémiai kezelés)

  4. TERMOKÉMIAI KEZELÉS Csoportosítás: az ötvöző elemet leadó hézag halmazállapota szerint - szilárd - folyékony - gázközegű Ezek különböznek a: - költségek - réteg szerkezete - réteg tulajdonsága - környezet károsítása tekintetében A szilárd (por) közeg → korszerűtlennek tűnik, de kis üzemben előnyös (egyszerű, olcsó) Sófürdő → szabályozási nehézségek, környezetszennyező nem perspektívikusak Gázközeg → jól szabályozható, könnyű automatizálhatóság környezetvédelmi szempont szerint kedvező (jelen és a jövő!)

  5. TERMOKÉMIAI KEZELÉS Fizikai kémiai folyamatok: Technológiától függetlenül az ötvöző elemet az acél gázfázisból veszi fel. A felületötvözés részfolyamatai: - kialakul egy gáz-fém határréteg - határréteg disszociál → aktív ötvöző keletkezik - ötvöző elem adszorbeálódik → kialakul ötvözőben gazdag fázik - megindul a diffúzió a mag irányába Diffúzió a ferritben vagy az ausztenitben valósul meg Megfontolandó: - a feltételek javulnak a T növelésével, de - a környezetben oxidálódik a felület, - romlik a korábbi hőkezeléssel elért tulajdonság, - ugyanakkor a Diffúziós tényező a ferritben nagyobb

  6. TERMOKÉMIAI KEZELÉS Kialakuló kéreg vastagsága: ahol: - x, mm - k, konstans mm/óra, ez függ a db minősségétől és T-től - t, idő, óra T és t együttes hatása látható T növelése kedvezőbb a kéregvastagság növelése szempontjából. Ipari gyakorlatban a „ nem fémekkel” való ötvözésé a vezető szerep. Ezek közül is a C, N, esetleg B

  7. TERMOKÉMIAI KEZELÉS CEMENTÁLÁS, BETÉTEDZÉS Cementálás – kéreg C-ban való dúsítása → HV Cem + edzés = betétedzés Alkalmazás: ha C< 0,2% (betétben edzhető acélok) 0,75 < C < 1,2% (MSZ 31 szerint) 0,1 < X < 3,0 mm Előfordul nagyobb C% - ú, ötvözött acélok cementálása Pl.: golyóscsapágy acélok, Cr ötvözésű szerszámacél Itt a cél a kopásállóság javítása Me3C, Me7C3, Me23C6 karbidokkal illetve: kedvező R maradó kialakítása

  8. TERMOKÉMIAI KEZELÉS Cementálás szilárd közegben Cementálószer: BaCO3 + Na2CO3 + faszén + kokszpor Ezt és a db-kat dobozba rakják és légmentesen lezárják. T= 850 - 900°C lejátszódó reakciók: BaCO3→ BaO + CO2 CO2 + Cfaszén→ 2 CO 2 CO → CO2 + Caktív Caktív + Fe → Fe (c) Paraméterek: Megfontolandó: T = 900°C - Tmin→ ahol elbomlik a BaCO3 t = 10 – 20 óra - Tmax, akkor diff. seb. , de x = 0,1 – 0,15 mm/óra - szemcsedurvulás lesz

  9. TERMOKÉMIAI KEZELÉS Cementálás folyékony közegben: Hagyományos sófürdő + C leadó adalék (NaCN, KCN) Vegyi reakciók: 2NaCN + O2 = 2NaCNO 2NaCNO + O2 = Na2CO3 + CO + 2N 2CO → CO2 + Caktív Caktív + Fe → Fe (c) Paraméterek: Tcem = 830 - 860°C tX=1,5mm = 5 – 10 óra Az adalék tiltott! (Egészség és környezetkárosító) → Előnyösebb a gázcementálás

  10. TERMOKÉMIAI KEZELÉS Gázközegű cementálás Közeg: legalább 90% metán tartalmú földgáz Ez disszociál: CH4→ 2 H2 + Caktív A keletkező Caktív megkötödik a felületen Paraméterek: Tcem = 930 - 950°C Tx= 1,5mm = 6 -12 óra Fémtani problémák - Ha C> 0,8% → karbid háló - Tcem nő → szemcsedurvulás - x → kopás, teherviselés

  11. TERMOKÉMIAI KEZELÉS Cementálást követő hőkezelések - Keménység és kopásállóság növeléséhez → edzés - Cél: a mag és kéreg megfelelő tulajdonságainak biztosítása Közvetlen edzés - megengedett az eldurvult szemcseszerkezet, - a szerényebb mechanikai tulajdonságok Szövetszerkezet: - mag: durvaszemcsés F + (P) - kéreg: durva M tűs Megeresztéskor a M stabilabbá változik

  12. TERMOKÉMIAI KEZELÉS Egyszeri edzés Cementálás után hevítés a kéreg C%-nak megfelelő T-re és innen olajban hűtés - Technológiai adatok számitása hasonló az edzésnél megismertekhez. - Hevítés szabályozott atmoszférában végzik ( dekarbanizáció!) Szövetszerkezet: - mag: durva szemcsés F + (P) (Csak örökletes finomszemcsés acéloknál megfelelő a mech. tulajd.) - kéreg: finom tűs M

  13. TERMOKÉMIAI KEZELÉS Kettős edzés Akkor alkalmazzák, ha szükség van a kéreg és a mag szerkezetének megváltoztatására Első edzés T = Tmag (normalizálás) - finomodik a mag, - kéregben a karbidható feloldodik Második edzés - a kéreg C%-nak megfelelő Megeresztés: kéreg tulajdonságainak beállitása

  14. TERMOKÉMIAI KEZELÉS NITRIDÁLÁS Nitridált kéreg szerkezete Megértéséhez szükséges ismerni a Fe – N metastabil rendszerű állapot ábrát. Különböző fázisok jellegzetességei: α - TKK, nitroferrit - N az oktaéderes pozíciókban - N max old. 590°C-on 0,115% 20°C –on 0,004% - ferromágneses

  15. TERMOKÉMIAI KEZELÉS γ - nitroausztenit FKK - N az oktaéderes rácshézagban - Max N oldása = 2,8% T= 650°C –on - Lassú hűtéskor eutektoidosan braunitra bomlik - Gyors hűtéskor → nitromartenzit keletkezik - Ez a α’- N – ben túltelitett szilárd oldat → tetragonális - Ez megeresztésállóbb mint a M(C) - Megeresztéskor Fe16N2 (α” fázis) majd Fe4N (γ’ fázis) válik ki γ’ (Fe4N) - rendezett rácsú szilárdoldat - összetételekben 590°C-on a N= 5,3 – 5,75% - FKK rácsú - N az oktaéder rácshézagban - Ferromágneses - T < 670°C alatt stabil. E felett ε- ná alakul

  16. TERMOKÉMIAI KEZELÉS ε – Fe2-3N rendezett rácsú szilárdoldat - N = 4,55 – 11% között változik - Hexagonális - N az oktaéderes rácshézagban - T = 650°C – eutektoidos bomlás: - Ferromágneses ξ - rombos kristályszerkezetű - N = 11,07 – 11,18% - T < 500°C – on stabil - Több C-t tud oldani, mint az ε - Összetétele: Fe8C3N és Fe2N között változik - Nitridálás szempontjából nem lényeges fázis

  17. TERMOKÉMIAI KEZELÉS - γ’,ε , és ξ fázisokat nitridnek nevezik - γ’ – C oldása elhanyagolható - Az α karbonja csökkenti az N oldhatóságot - ötvözők: - megváltoztatják az α, γ’ és ε N oldódását - W, Mo, Cr, Ti, V növelik az α -ban a N oldódását - ötvözött acélban γ’ és ε fázisok komplex nitrid és karbonitrid (Pl.: Fe, Me4N; FeMe3NC stb.) - γ’ -ben az Al és Si nagy mennyiségben oldódhat - szélesítik a γ’ homogén területét! - ε -ban oldódók növelik a keménységét! - Ötvöző nitridek is keletkeznek - Ezek nagy N tartalmúak

  18. TERMOKÉMIAI KEZELÉS Nitridált kéreg kialakulása: Nitridálás előtti állapot: - lágyított, normalizált állapot szövetszerkezet: F + P - nemesített: szferoidit Kiinduló állapot: Fe alapú szilárd oldat + karbid Nitridálás hőmérséklete: - minél magasabb legyen (diffúzió miatt) - ugyanakkor ne rontsuk el a korábban kialakított tulajdonságot - kéregben ne legyen fázisátalakulás (strukturális feszültségek) Ezek figyelembevételével: Tnitridálás = 520 - 580°C

  19. TERMOKÉMIAI KEZELÉS Kéreg kialakulásának mechanizmusa: - adszorbeállódott N-t oldja az α szilárdoldat - felületen kialakul egy telítetlen α - megindul a N diffúziója a mag irányába - adszorpció gyorsabb, mint a diffúzió - t1 időpontban a α telítetté válik - csíraképződéssel megjelenik a γ’ (szemcse-, mozaikblokkhatáron, diszlokációhoz) - első csírák a felületig kiérő α határa - γ’ csak a túltelített α -ban növekedhet → a felületen összefüggő γ’ kéreg - a kéregvastagság nő - γ’ kialakulása → ugrásszerű N% - Felületen telítődik γ’-ben a N → megjelenik az ε. εN tartalma széles határokon belül változik. - γ’ és ε határon ugrásszerű N% változás

  20. TERMOKÉMIAI KEZELÉS Kialakult kéreg: T < Ac1, Ha ezt lehűtjük szobahőmérsékletre: fázisokból fog állni Ötvözött acélokban az εkét fázisból áll. felül: (FeMe)2CN és majd kialakul az (FeMe)3CN Különbség: 2%N A nagy N%-u ε -ban a N atom „ kiül” a rácshibákra → atomok molekulává rekombinálódnak → nő a nyomás → mikrorepedés → oxidáció → Fe2O3→ pórusképződés → csökkenti a HV-t, kopásállóságot - ε porozitása függ a % -től - c% csökkenti a N diffúzióját → növeli pórusképződést → csökkenti HV-t

  21. TERMOKÉMIAI KEZELÉS - ε alatt helyezkedik el a belső nitridálódási zóna - Ez vas-nitridből és ötvöző nitridből áll • Nitridképződés térfogatnövekedéssel jár - torzul az α - rácstorzulás és a nitridek gátolják a diszlokációkat(Cr, Mo) → csökken az A5 és nő az Rm és ReH, HV A hatás akkor jelentős, ha a nitridek koherensek. Ha nagyobb méretű nitridek keletkeznek → nem a rács torzulás hanem ezek távolsága a meghatározó → Kisebb lesz a HV

  22. TERMOKÉMIAI KEZELÉS A kéreg jellemző tulajdonságai Kéreg: 1. vegyületi zóna 2.diffúziós zóna Vegyületi zóna: (telitőközegtől függően) - ε - nitrid - ε karbonitrid - ε oxinitrid - ε oxi-karbonitrid ε Fázis alatt van az ε + γ’ zóna. γ’ mennyisége függ a hűtés sebességétől Vegyületi zónára jellemző: - HV és kopásállóság - igen vékony 0,01 – 0,025 mm HV ε porózus karbonitrid = 200 – 300 MHV HV ε tömör karbonitrid = 900 – 1600 MHV

  23. TERMOKÉMIAI KEZELÉS Diffúziós zóna: α + nitridek Tulajdonsága függ: - a nitrid minőségétől - mennyiségétől - eloszlásától - méretétől - alakjától befolyásolható: - hőmérséklettel - idővel tulajdonsága függ az ötvözöktől és N%-tól Al és Si a γ’ -ben összpontosul Cr, Mo, Ti, V α -ban oldódik HV= f(techn. paraméter, ötvöző %) = 500 – 1000 HV10 Alacsonyabb hőmérsékleten nagyobb keménységű diffúziós zóna állítható elő.

  24. TERMOKÉMIAI KEZELÉS Szerkezeti acélok nitridálása Hatás: - kopásállóság javul • kifáradási határ nő Mag tulajdonságát korábban alakitják ki (normalizálás, nemesítés). Kéreg vastagsága és szerkezete függ a nitridálás előtti fémtani állapottól (szövetsz.) Diffúziós egyenletből következik: - N behatolási mélysége • x= f (T) exponiciális, míg az időtől • másodfokú parabola szerint változik • Nitridálás közben az anyag megeresztődik • Csökken a kifáradási határ, mivel: - csökken a magszilárdság - Kisebb lesz a kéregben a nyomófeszültség • →Korábbi megeresztés T > Tnitridálás + 50°C legyen

  25. TERMOKÉMIAI KEZELÉS - Vegyületi zóna tulajdonsága függ az ε N%-tól - Kedvezőbb a kis N% az ε - ban - Ha Tnitrid növeljük → nő a N diffúziója → csökken az ε N tartalma és csökken a HV eloszlás meredeksége. - Az ε vastagsága a megengedhető kopás mértékétől függ. (Felesleges növelni) - De a Rmaradó = f (x, ε, és a szerkezettől) optimális, ha : ε = 15 – 20 µm ha ε > 20µm → csökken a kifáradási határ Méretváltozás! Mivel – nitridképződés → fajtérfogatváltozás → megeresztődés - Db. duzzadni fog → nomogrammok → tervezhető a méretnövekedés

  26. TERMOKÉMIAI KEZELÉS Szerszámacélok nitridálása - Igénybevételek: - koptató - felületi, ill. élnyomás → ciklikus → fáradás - sokszor ütésszerű → Kemény kéreg és nívós kéreg alatti rész kell! - Forgácsoló és alakító szerszámoknál előnyös a nitridált kéreg. - Gyorsacélnál: felületen csak diffúziós zóna keletkezzen. - vágóélen kisebb a súrlódási erő → kisebb az él T-e - kisebb a diffúziós kopás - csökken a forgács szerszámra tapadása - lényeges a maradó feszültség eloszlása - Kéregben jelentős nyomófeszültség (kedvezö) - Átmenet 0,05 – 01 mm-nél - Felületen a keménység: 1100 – 1400MHV - Ez növelhető az α ötvözésével Kedvező a hőállósága: 700°C-on a HV = 700 MHV pl.: K13, K14, R3

  27. TERMOKÉMIAI KEZELÉS Nitridálás technológiája: - Legrégebbi felületötvözés (Damaszkuszi kard) Nitridálás sófürdőben: - Sók termikus bomlásakor keletkező N-t használják - Káros egészségre, környezetre (KCN, NaCN) 2KCN + O2→ 2KCNO 2KCNO + O2→ K2CO3+CO + 2Naktív Gyakorlati megoldás Nem használják!

  28. TERMOKÉMIAI KEZELÉS Gáznitridálás: - T = 500 - 600°C kell az Naktív → N leadó közeg az NH3 - T = 400°C-on 2NH3→ 3H2 + 2 Naktív - Gázt áramoltatni kell, mert N + N = N2 gáztér aktívitása függ a disszociáció fokától Ez pedig: T, p, v felület min-től - nitridálás gyenge túlnyomással (p = 500 Pa) Paraméterek: - T = f(s, felületi HV) - vékony, nagy HV réteg kis T-en - vastagabb de kisebb HV réteg magasabb T-en - Általában aknás retortás kemencében végzik - Ha kemény, kopásálló kérget akarunk → NH3 + C tart. Keverék - Ha a vegyületi zónát akarjuk változtatni → az NH3 -at hígítani kell N2, H2, Ar H2 – vékonyabb zónát eredményez N2 – vastagabb zónát eredményez

  29. TERMOKÉMIAI KEZELÉS Ionnitridálás: - Legkorszerűbb, gyártósorba is beépíthető -Technológia - Db.-ot tartályba helyezzük, villamosan elszigetelve katódként kapcsoljuk - Levegőt kiszívják, majd feltöltik N2, N2+H2-vel - Katódporlasztással tisztitjuk, aktiváljuk a felületet p=0,1 - 0,2 kPa, U=1000V - Nitridálás : p=0,2 -2 kPa, U=400 – 1000V - Folyamatok: - N+++ → a felületre csapódnak → T= 400 - 580°C - Fe++ távolit el - A plazmában nitrideket alkotnak és ezek a felületre egyenletesen lerakódnak - Diffúzióval megindul a kéreg képződése - nitridálási idő: 15 – 30 perc

  30. TERMOKÉMIAI KEZELÉS Nitridálás számitógépes tervezésének alapadatai Kívánalom: Kéreg – vastagsága - keménysége - szerkezete - maradó feszültség Paraméterek T, t, p, gázösszetétel, sebesség felületminőség, U Irodalomban kevés konkrét adat van. A számitógépes tervezés lehetőségével a VEM alkalmazás feltételeivel a későbbiekben találkozhatunk.

  31. KÖSZÖNÖM AFIGYELMET!

More Related