1 / 8

ANAVA ANALISIS VARIANSI

ANAVA ANALISIS VARIANSI. Klasifikasi satu arah Pendekatan yang memungkinkan digunakannya data sampel untuk menguji apakah nilai dari dua atau lebih rata-rata adalah sama . Hipotesis-nol yang digunakan dalam analisis sampel adalah :

Download Presentation

ANAVA ANALISIS VARIANSI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ANAVAANALISIS VARIANSI Klasifikasisatuarah Pendekatanyang memungkinkandigunakannya data sampeluntukmengujiapakahnilaidariduaataulebih rata-rata adalahsama. Hipotesis-nol yang digunakandalamanalisissampeladalah : Ho : 1 = 2 = 3…………..=k, sedanghipotesis-alternatifnya : HI : seluruhpopulasitidakmempunyairerata yang sama. Dalamanalisisini, bilahipotesis-alternatif yang diterima, makapaling tidakakanterdapatsebuahreratapopulasi yang berbeda. Tetapianalisisinitidakakanmemberikaninformasi, berapabanyak yang berbedaataupopulasimanasaja yang berbeda.

  2. Prosedurpengujian : RK = RJA / RJD = [JA/(k-1)] / [JD / (k) (n – 1)] Dimana ; JK = ∑ ∑ X ij2 - C JA = [(∑ T i2 ) / ( n ) ] – C C = T2 / kn JD = JK – JA Bilasampeltidaksama : JA = [(∑ T i2 ) / ( ni ) ] – C C = T2 / ∑n JA = Jumlahkuadratantarsampel JD = Jumlahkuadratdalamsebuahsampel JK = Jumlahkuadratkeseluruhan C = koreksi Ti = Jumlah n observasidalamsampelke-I T = Jumlahknobservasi

  3. Rekapitulasi ANAVA _____________________________________________________________________ SumberDerajat ∑ Kuadrat Rata kuadrat RK VariasikebebasanDf ===================================================================== Perlakuan k – 1 JA RJA = JA/(k-1) RJA/RJD Galat k(n -1) JD RJD= JD/(k)(n-1) ===================================================================== Jumlah nk-1 JK Bandingkannilai RK dengantabeldistribusi F denganα 1% atau 5% Penerimaan HO Penolakan HO α = 5% atau 1 % 0 F Contoh ; Df1 = Degree of freedom for numerator = k – 1 Df2 = Degree of freedom for denumerator = k (n – 1)

  4. Contoh : Lakukananalisisvariansiuntukmengetahui, apakahadaperbedaan yang berartiantaraklastersebutdalamhalperolehannilai, denganα 5% (Jumlahsampelsama) ============================================================= Klas A Klas B klas C Klas D ============================================================= 80 90 70 85 70 85 80 90 80 70 90 85 90 65 80 70 80 80 60 75 60 75 80 90 80 70 75 75 75 95 85 80 80 90 75 65 60 75 90 70 =============================================================

  5. Penyelesaian : Ho µA = µB = µC=µD H1 µA ≠ µB ≠ µC≠µD HitungNilai : Ti, T2, C, JK, JD, JA ============================================================= Klas A Klas B klas C Klas D ============================================================= 80 90 70 85 70 85 80 90 80 70 90 85 90 65 80 70 80 80 60 75 60 75 80 90 80 70 75 75 75 95 85 80 80 90 75 65 60 75 90 70 ============================================================= TA= TB = TC = TD = T = TA + TB +TC + TD

  6. T total = 3120 C = (T total) 2 / [(k)(n)] = 243360 JA = [[(TA)2 + (TB)2+(TC)2+(TD)2] / (n) ] - C = 90 JK = (80)2 + (70)2 + …….. + (65)2+ (70)2 ] - C = 3290 JD = JK - JA = 3200 RJA = JA/(k - 1) = 30 RJD = JD/[(k)(n - 1)] = 88.889 RK = RJA / RJD = 0.3375 BerdasarkantabelDistribusi F : α = 5% Df1 = (k - 1) = 3 Df2 = k (n - 1) = 36 Diperolehnilai F adalah 2.88 RK Penerimaan HO Penolakan HO α =5% 0 F =2.88 Ternyata RK jatuhdidaerahpenerimaan, jadi HO diterima. Artinyabahwanilaidiklastersebuttidakadaperbedaan yang berarti.

  7. Sampeltidaksama Diketahui data sebagaiberikut : Kelompok A Kelompok B Kelompok C 90 105 83 82 89 89 79 93 80 98 104 94 83 89 91 95 86 Lakukananalisisvariansiuntukmengetahui, apakahadaperbedaan yang berartiantarakelompoktersebut , denganα 5% Penyelesaian : Ho µA = µB = µC H1 µA ≠ µB ≠ µC

  8. TA =523 , TB = 661 , TC =346 T total =1530 C (T total) 2 / [n] = 137700 JA = [[(TA)2 /6+ (TB)2/7+(TC)2/4] ] - C = 234.452 JK = (90)2 + (82)2 + …….. + (80)2+ (94)2 ] - C = 938 JD = JK - JA = 703.548 RJA = JA/(k - 1) = 117.226 RJD = JD/[n - k)] = 50.2534 RK = RJA / RJD = 2.3327 BerdasarkantabelDistribusi F : α = 5% Df1 = (k - 1) = 2 Df2 = (n - k) = 14 Diperolehnilai F adalah 3.74 RK Penerimaan HO Penolakan HO α = 5% 0 F = 3.74 Ternyata RK jatuhdidaerahpenerimaan, jadi HO diterima. Artinyabahwatidakadaperbedaan yang berartiantaraketigakelompoktersebut.

More Related