1 / 8

havo B 9.3 Logaritmische functies

havo B 9.3 Logaritmische functies. Logaritme en exponent. 2 x = 8 x = 3 want 2 3 = 8 2 x = 8 ⇔ 2 log(8) 2 3 = 8 ⇔ 2 log(8) = 3 2 log(32) = 5 want 2 5 = 32 algemeen: g log( x ) = y betekent g y = x dus g log( g y ) = y x > 0 , g > 0 en g ≠ 0.

Download Presentation

havo B 9.3 Logaritmische functies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. havo B 9.3 Logaritmische functies

  2. Logaritme en exponent • 2x = 8 • x = 3 want 23 = 8 • 2x = 8 ⇔ 2log(8) • 23 = 8 ⇔2log(8) = 3 • 2log(32) = 5 want 25 = 32 • algemeen: • glog(x) = y betekent gy = x • dus glog(gy) = y • x > 0 , g > 0 en g ≠ 0

  3. a 5log(0,2) = 5log() = 5log(5-1) = -1 b3log(3√3) = 3log(31 . 3½) = 3log(31½) = 1½ c½log(8) = ½log((½)-3) = -3 d¼log() = ¼log((¼)2) = 2 voorbeeld

  4. De standaardgrafiek y = glog(x) functies f en g met de eigenschap dat hun grafieken elkaars spiegelbeeld zijn in de lijn y = x heten inverse functies g > 1 0 < g < 1 y y y = x y = x y = 2x 1 y = (½)x 1 x x O O 1 1 y = 2log(x) y = ½log(x)

  5. voorbeeld x = 4 y 4 a y = 3log(x) 4 naar rechts y = 3log(x – 4) 2 omhoog y = 3log(x – 4) + 2 b Df= < 4, > 3 2  1  x    1 3 9 3log(x) -1 0 1 2 -2    O 5 1 2 3 4 2 omhoog -1   4 naar rechts -2  

  6. opgave 44 4 a verticale asymptoot : 4x – 1 = 0 x = ¼ voer in y1 = log(4x-1)/log(3) bf(x) ≤ 2 3log(4x – 1) = 2 4x – 1 = 32 4x = 10 x = 2½ ¼ < x ≤ 2½ 3 ∙ ∙ y = 2 2 ∙ x 1 2 3 4 ∙ 1 1,8 2,2 2,5 1 3log(4x - 1) ∙ -1 0 2 3 4 x 1 2½ -1 -2 x = ¼

  7. opgave 47 a f(x) = 6 + ½log(x2 + 5) x2 + 5 = 0 heeft geen oplossingen dus f heeft geen verticale asymptoot g(x) = 3log(x2 – 2x) x2 – 2x = 0 x(x – 2) = 0 x = 0 v x = 2 voer in y1 = 6 + log(x2 + 5)/log(½) en y2 = log(x2 – 2x)/log(3) y g f x O x = 0 x = 2

  8. b optie intersect (-2,759 ; 2,344) en (3,776 ; 1,732) c f(x) > g(x) -2,759 < x < 0 v 2 < x < 3,776 g f x O -2,759 3,776 x = 0 x = 2

More Related