814 likes | 1.89k Views
UTP FIMAAS. Física. Curso: Fisica General. Sesión Nº 5 : Cinemática de una partícula. Gráficas del MRU y MRUV.....continuación. Movimiento Compuesto. Movimiento en dos dimensiones,
E N D
UTP FIMAAS Física Curso: Fisica General Sesión Nº 5 :Cinemática de una partícula. Gráficas del MRU y MRUV.....continuación. Movimiento Compuesto. Movimiento en dos dimensiones, Movimiento Parabólico. Profesor: Carlos Alvarado de la Portilla
Bibliografía • Sears y Zemansky: Física Universitaria. • Schaum: Física General • http://www.didactika.com/fisica/descargas/mecanica/cinematica.ppt#256,1,Diapositiva 1 • http://es.geocities.com/davidfisica/movcomp.html
Temas a desarrollar • Gráficas de la posición y de la velocidad en función del tiempo, en el MRU. • Gráficas de la posición y de la velocidad en función del tiempo, en el MRUV. • Movimiento Compuesto. • Movimiento en dos dimensiones, • Movimiento Parabólico.
Gráficas de la posición y de la velocidad en función del tiempo, en el MRU y MRUV
Gráficas de la posición y de la velocidad en función del tiempo, en el MRU. • Gráfica aceleración-tiempo en el MRU • Gráfica velocidad- tiempo para el MRU: • Gráfica espacio - tiempo para el MRU: Profesor: Carlos Alvarado de la Portilla
0 Gráfica aceleración-tiempo en el MRU: • Siempre es una línea recta horizontal que coincide con el eje x; es decir la aceleración es 0. a a0 t
0 Gráfica velocidad- tiempo para el MRU • La grafica se obtiene representando el tiempo en el eje de las abscisas, la velocidad en el eje de ordenadas; y uniendo los sucesivos puntos que se van obteniendo. • La gráfica de la velocidad para el MRU es un segmento rectilíneo horizontal. La distancia que separa este segmento del eje de las abscisas es exactamente igual a la velocidad del móvil. V V0 t
v A t A = x (área = desplazamiento) Gráfica velocidad- tiempo para el MRU….: En la gráfica velocidad- tiempo para el MRU, el área bajo la gráfica representa el espacio recorrido por el móvil.
x a t v = tga (progresivo) Gráfica espacio- tiempo para el MRU: • La grafica se obtiene representando el tiempo en el eje de las abscisas, el espacio recorrido en el eje de ordenadas; y uniendo los sucesivos puntos que se van obteniendo. • La gráfica obtenida es un segmento rectilíneo oblicuo cuya pendiente es siempre constante que coincide con la velocidad del móvil.
0 Gráfica espacio- tiempo para el MRU…continua • Si el recorrido del móvil no comienza en el origen de espacios; la gráfica espacio-tiempo sigue siendo un segmento rectilíneo oblicuo, pero que no sale del origen de coordenadas. x x0 q t v = tang θ (progresivo)
0 0 0 Resumen 1; de las Gráficas del Movimiento Rectilíneo Uniforme MRU a t V V0 t x x0 t
Resumen 2; Gráficas del Movimiento Rectilíneo Uniforme MRU 0 0 v x A a t t A = x (área = desplazamiento) v = tga (progresivo) x x a a b x0 x0 t t v = tga (progresivo) v = tga = - tgb (retrógrado) Gráfica: Espacio - Tiempo Gráfica: Velocidad - Tiempo Gráfica: Espacio - Tiempo Gráfica: Espacio - Tiempo Profesor: Carlos Alvarado de la Portilla
Gráficas de la posición, de la velocidad y de la aceleración en función del tiempo, en el MRUV. • Gráfica aceleración-tiempo en el MRUV. • Gráfica velocidad- tiempo para el MRUV. • Gráfica espacio - tiempo para el MRUV.
a Pendiente = 0 a a t O Gráfica aceleración-tiempo en el MRUV. • La gráfica se obtiene representando el tiempo en el eje de las abscisas, la aceleración en el eje de ordenadas; y uniendo los sucesivos puntos que se van obteniendo. • La aceleración se mantiene constante por lo tanto su gráfica es una línea recta paralela al eje del tiempo. • Elárea bajo la línea nos da el cambio de la velocidad en un intervalo de tiempo. Área = Dv Area Area = Dv
u Pendiente = a u u0 v u0 a v0 t O t t a = tga (progresivo) Gráfica velocidad- tiempo para el MRUV. • La gráfica se obtiene representando el tiempo en el eje de las abscisas, la velocidad en el eje de ordenadas; y uniendo los sucesivos puntos que se van obteniendo. • La gráfica es una línea recta inclinada. • La pendiente de la recta nos da la aceleración del móvil.
pendiente = v(t) x(t) xo Pendiente = v0 t Gráfica espacio - tiempo para el MRUV. • La gráfica se obtiene representando el tiempo en el eje de las abscisas, el espacio en el eje de ordenadas; y uniendo los sucesivos puntos que se van obteniendo. • La gráfica es una parábola que será cóncava hacia arriba si el movimiento es acelerado. • La pendiente de la tangente a la curva nos da la velocidad instantánea. tan θ = v(t) θ tan θ = v(t)
a pendiente = v(t) u x(t) Pendiente = 0 Pendiente = a a a u u0 xo u0 Pendiente = v0 t t O O t t Resumen de graficas del MRUV t
Movimiento en dos dimensiones Movimiento parabólico v: Velocidad Final (m/s) v0: Velocidad Inicial (m/s) g: Aceleración de gravedad (m/s2) Dx: Variación de Espacio (m) Y V Vy Vx V0 V0y q X V0x
Movimiento compuesto • Es todo movimiento que resulta de la composición de dos o mas movimientos simples o elementales (MRU o MRUV).
Principio de independencia de movimientos: • Fue formulado por Galileo; dice: “Si un cuerpo tiene movimiento compuesto, cada movimiento simple se realizará como si los otros movimientos no existieran”.
Movimientos Compuestos • Principio de Independencia de los Movimientos • Este principio fue establecido por Galileo Galilei, y establece que: “Los movimientos componentes en un movimiento compuesto se desarrollan independientemente uno de otro”, es decir, el desarrollo de un movimiento no se altera por la presencia de otro movimiento componente
Movimiento Parabólico • Cuando lanzamos un cuerpo al aire vemos que él se ve obligado a bajar por causa de la gravedad. Si el tiro fuera inclinado y el medio fuese el vacío, el móvil describiría una trayectoria curva llamada parábola, la cual tendrá una forma final que dependerá de la velocidad y ángulo de disparo.
Movimiento parabólico Y v: Velocidad Final (m/s) v0: Velocidad Inicial (m/s) g: Aceleración de gravedad (m/s2) Dx: Variación de Espacio (m) V Vy Vx V0 V0y q X V0x
Movimiento Parabólico…..continua • Galileo demostró que el movimiento parabólico debido a la gravedad es un movimiento compuesto por otros dos: Uno horizontal y el otro vertical. Descubrió asimismo que el movimiento horizontal se desarrolla siempre como un M.R.U. y el movimiento vertical es un M.R.U.V. con aceleración igual a “g”.
Movimiento Parabólico…..continua • Cuando estudies un movimiento parabólico has una separación imaginaria de sus movimientos componentes. Así del ejemplo de la Fig. 1 tendremos que: • a) Desplazamiento total: • b) Desplazamiento Vertical: • c) Desplazamiento Horizontal:
Tiro semiparabólico • En la Fig. 1 se muestra un cuerpo lanzado en A de manera horizontal con una velocidad Vx, que se mantendrá constante a lo largo del movimiento. • En el movimiento vertical se observa que la velocidad vertical en A es nula(Vo = 0), pero a medida que el cuerpo cae, esta velocidad va aumentando de valor. • Las distancias recorridas tanto en el eje vertical como en el horizontal se han efectuado en intervalos de tiempo iguales.
Tiro parabólico • Una partícula se ha lanzado desde A con una velocidad “V” y una inclinación θ, tal como se muestra en la Fig. 2. Por efecto de la gravedad, a medida que el proyectil sube de manera inclinada se ve forzada a bajar, retornando al piso en B.
Tiro parabólico • Formulas especiales: • El siguiente grupo de fórmulas sólo se aplican para movimientos parabólicos como el que aparece en la Fig. 2. Así tenemos: • a) Tiempo de Vuelo: • b) Altura Máxima: • c) Alcance Horizontal: • d) Relación entre la Altura Máxima y el Alcance Horizontal: • e) Relación entre la Altura Máxima y el Tiempo de Vuelo:
Alcance Horizontal Máximo • El alcance horizontal máximo se logra cuando el ángulo de disparo es de 45°.
MOVIMIENTO DE PROYECTILES • Ejemplo
Alcance horizontal y altura máxima En el simulador se trazan las trayectorias de proyectiles disparados con la misma velocidad inicial v0 pero con los siguientes ángulos de tiro q : 10º, 20º, 30º, 40º, 45º, 50º, 60º, 70º, 80º, 90º. Las ecuaciones del movimiento de los proyectiles son x =V0·cosq ·t Vx =V0·cosq y=V0·senq ·t-g·t2/2 Vy=v0·senq-g·t
La parábola de seguridad El alcance horizontal de cada uno de los proyectiles se obtiene para y=0. Su valor máximo se obtiene para q =45º, teniendo el mismo valor para q =45+a , que para q =45-a . Por ejemplo, tienen el mismo alcance los proyectiles disparados con ángulos de tiro de 40º y 60º, ya que sen(2·40) = sen(2·60).
La parábola de seguridad La altura máxima que alcanza un proyectil se obtiene con vy=0. Su valor máximo se obtiene para el ángulo de disparo q =90º. La envolvente de todas las trayectorias descritas por los proyectiles cuyo ángulo de disparo está comprendido entre 0 y 180º se denomina parábola de seguridad.